Singular Reduction and the Stratification Theorem

  • Juan-Pablo Ortega
  • Tudor S. Ratiu
Part of the Progress in Mathematics book series (PM, volume 222)


This chapter studies the structure of the symplectic reduced spaces introduced in Chapter 6 when the hypothesis on the freeness of the canonical group action is dropped. In this new scenario, standard momentum maps are not submersions anymore and consequently, the reduced spaces are not necessarily smooth manifolds, but just quotient topological spaces. The main result proved here shows that these quotients are symplectic Whitney stratified spaces in the sense that the strata are symplectic manifolds in a very natural way; moreover, the local properties of this Whitney stratification make it into a cone space in the sense of Definition 1.7.3. This statement is referred to as the Symplectic Stratification Theorem. This symplectic stratification is well adapted to the study of G-invariant dynamics since the flows of Hamiltonian vector fields associated to G-invariant Hamiltonian functions naturally reduce to Hamiltonian systems on these strata.


Symplectic Manifold Isotropy Subgroup Hamiltonian Vector Field Initial Topology Integral Submanifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Juan Pablo Ortega and Tudor S. Ratiu 2004

Authors and Affiliations

  • Juan-Pablo Ortega
    • 1
  • Tudor S. Ratiu
    • 2
  1. 1.CNRS-Laboratoire de Mathématiques de BensançonUniversité de Franche-Comté, UFR des Sciences et TechniquesBensançon CedexFrance
  2. 2.Départment de MathématiquesLausanneSwitzerland

Personalised recommendations