Advertisement

Vertigo pp 485-496 | Cite as

Motion sickness

  • Thomas Brandt

Abstract

Motion sickness is induced during passive locomotion in vehicles. It is generated either by unfamiliar body accelerations, to which the person has therefore not adapted, or by an intersensory mismatch involving conflicting vestibular and visual stimuli (Dichgans and Brandt 1973, 1978; Benson 1977; Reason 1978; Brandt and Daroff 1980; Crampton 1990). According to the “mismatch theory” (see also p. 4), spatial orientation and perception of movement are disturbed by a conflict between stimuli, when the multisensory motion signals do not correspond to the expected pattern of sensory signals established from earlier experience with active locomotion. This may give rise to unpleasant illusions of movement with consequences for posture and vehicle control (Dichgans and Brandt 1978; Leibowitz et al. 1982) and result in motion sickness due to summation. This simple “sensory conflict” theory of motion sickness has been questioned by those who argue that there is no principled basis on which this concept can distinguish between nauseogenic and non-nauseogenic stimulus situations (Stoffregen and Riccio 1991; Riccio and Stoffregen 1991).

Keywords

Semicircular Canal Squirrel Monkey Motion Sickness Parabolic Flight Coriolis Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbusow V, Strupp M, Brandt T (1998) Amiodarone-induced severe, prolonged head-positional vertigo and vomiting. Neurology: 51: 917PubMedCrossRefGoogle Scholar
  2. Armstrong HG (1939) Principles and practice of aviation medicine. Williams and Wilkins, BaltimoreGoogle Scholar
  3. Babkin BP, Bornstein MB (1943) The effect of swinging and of binaural galvanic stimulation on the motility of the stomach in dogs. Rev Can Biol 2: 336Google Scholar
  4. Baker PCH, Bernat JL (1985) The neuroanatomy of vomiting in man: association of projectile vomiting with a solitary metastasis in the lateral tegmentum of the pons and the middle cerebellar peduncle. J Neurol Neurosurg Psychiatry 48: 1165–1168PubMedCrossRefGoogle Scholar
  5. Balaban CD, Porter JD (1998) Neuroanatomic substrates for vestibulo-autonomic interactions. J Vestib Res 8: 7–16PubMedCrossRefGoogle Scholar
  6. Banta GR, Ridley WC, McHugh J, Grissett JD, Guedry FE (1987) Aerobic fitness and susceptibility to motion sickness. Aviat Space Environ Med 58: 105–108PubMedGoogle Scholar
  7. Barabas G, Matthews WS, Ferrari M (1983) Childhood migraine and motion sickness. Pediatrics 72: 188–190PubMedGoogle Scholar
  8. Barabas G, Matthews WS, Ferrari M (1984) Motion sickness in children with Tourette’s syndrome. Ann Neurol 15: 309PubMedCrossRefGoogle Scholar
  9. Baumgarten RJ von, Thümler R (1979) A model for vestibular function in altered gravitational states. In: Holmquist R (ed) (Cospar) Life sciences and space research. Pergamon Press, Oxford, pp 161–170Google Scholar
  10. Baumgarten RJ von, Baldrighi G, Vogel H, Thümler R (1980) Physiological response to hyper-and hypogravity during rollercoaster flight. Aviat Space Environ Med 51: 145–154Google Scholar
  11. Benson AJ (1973) Physical characteristics of stimuli which induce motion sickness, a review. IAM Rep 532: 1–20Google Scholar
  12. Benson AJ (1977) Possible mechanisms of motion and space sickness. Proceedings of the European symposium on life sciences research in space. European Space Agency SP-130: 101–108Google Scholar
  13. Borison HL, Wang SC (1949) Functional localization of central coordinating mechanism for emesis in cat. J Neurophysiol 12: 305–313PubMedGoogle Scholar
  14. Brandt Th (1976) Optisch-vestibuläre Bewegungskrankheit, Höhenschwindel and klinische Schwindelformen. Fortschr Med 94: 1177–1182PubMedGoogle Scholar
  15. Brandt Th, Daroff RB (1980) The multisensory physiological and pathological vertigo syndromes. Ann Neurol 7: 195–203PubMedCrossRefGoogle Scholar
  16. Brandt Th, Wist ER, Dichgans J (1971) Optisch induzierte PseudoCoriolis-Effekte and Circularvektion: Ein Beitrag zur optischvestibulären Interaktion. Arch Psychiat Nervenkr 214: 365–389Google Scholar
  17. Brandt Th, Dichgans J, König E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16: 476–491PubMedCrossRefGoogle Scholar
  18. Brandt Th, Dichgans J, Wagner W (1974) Drug effectiveness on experimental optokinetic and vestibular motion sickness. Aerospace Med 45: 1291–1297PubMedGoogle Scholar
  19. Brandt Th, Wenzel D, Dichgans J (1976) Die Entwicklung der visuellen Stabilisation des aufrechten Standes beim Kind: Ein Reifezeichen in der Kinderneurologie. Arch Psychiat Nervenkr 223: 1–13Google Scholar
  20. Brizzee KR, Igarashi M (1986) Effect of macular ablation on frequency and latency of motion induced emesis in the squirrel monkey. Aviat Space Environ Med 57: 1066–1070PubMedGoogle Scholar
  21. Brown JH, Crampton GH (1966) Concomitant visual stimulation does not alter habituation of nystagmic, oculogyral or psychophysical responses to angular acceleration. Acta Otolaryngol (Stockh) 61: 80–91CrossRefGoogle Scholar
  22. Bruner JM (1955) Seasickness in a destroyer escort squadron. US Armed Forces Med J 6: 469–490Google Scholar
  23. Chinn HI, Smith PK (1955) Motion sickness. Pharmacol Rev 7: 33–83PubMedGoogle Scholar
  24. Colehour JK (1965) Stress measurements in normal and labyrinthine defective subjects in unusual force environments. In: The role of vestibular organs in the exploration of space. NASA, Sp-77, Washington DC, pp 347–355Google Scholar
  25. Collins WE, Schroeder DJ, Elam GW (1982) A comparison of some effects of three antimotion sickness drugs on nystagmic responses to angular accelerations and to optokinetic stimuli. Aviat Space Environ Med 53: 1182–1189PubMedGoogle Scholar
  26. Corcoran ML, Fox RA, Daunton NG (1990) The susceptibility of rhesus monkeys to motion sickness. Aviat Space Environ Med 61: 807–809PubMedGoogle Scholar
  27. Cowings PS, Toscano WB (1982) The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression. Aviat Space Environ Med 53: 570–575PubMedGoogle Scholar
  28. Crampton GH (1990) Motion and space sickness. CRC Press, Boca RatonGoogle Scholar
  29. Crum Brown A (1874) On the sense of rotation and the anatomy and physiology of the semicircular canal of the internal ear. J Anat Physiol 8: 327–331Google Scholar
  30. Cummings AJ (1958) The physiology of symptoms: III Nausea and vomiting. Am J Digest Dis 3: 710–721CrossRefGoogle Scholar
  31. Davis JR, Vanderploeg JM, Santy PA, Jennings RT, Stewart DF (1988) Space motion sickness during 24 flights of the space shuttle. Aviat Space Environ Med 59: 1185–1189PubMedGoogle Scholar
  32. Denise P, Etard O, Zupan L, Darlot C (1996) Motion sickness during off-vertical axis rotation: prediction by a model of sensory interactions and correlation with other forms of motion sickness. Neurosci Lett 203: 183–186PubMedCrossRefGoogle Scholar
  33. Desnoes P (1926) Seasickness. JAMA 86: 319–324CrossRefGoogle Scholar
  34. Dichgans J, Brandt Th (1973) Optokinetic motion sickness and pseudo-Coriolis-effects induced by moving visual stimuli. Acta Otolaryngol (Stockh) 76: 339–348CrossRefGoogle Scholar
  35. Dichgans J, Brandt Th (1978) Visual-vestibular interaction: Effects on self-motion perception and postural control. In: Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology, vol Vlll, Perception. Springer, Berlin Heidelberg New York, pp 755–804Google Scholar
  36. DiZio P, Lackner JR (1991) Motion sickness susceptibility in parabolic flight and velocity storage activity. Aviat Space Environ Med 62: 300–307PubMedGoogle Scholar
  37. Dobie TG, May JG (1994) Cognitive-behavioral management of motion sickness. Aviat Space Environ Med (Suppl 10 ) 65: C1–C20Google Scholar
  38. Doweck I, Gordon CR, Spitzer O, Melamed Y, Shupak A (1994) Effect of cinnarizine in the prevention of seasickness. Aviat Space Environ Med 65: 606–609PubMedGoogle Scholar
  39. Fukuda T (1975) Postural behaviour in motion sickness. Acta Otolaryngol (Stockh) 330: 9–14CrossRefGoogle Scholar
  40. Gay LN, Carliner PE (1949) The prevention and treatment of motion sickness. 1. Sea sickness. Bull Johns Hopkins Hosp 84: 470–487Google Scholar
  41. Gierke HE von, Parker DE (1994) Differences in otolith and abdominal viscera graviceptor dynamics: implications for motion sickness and perceived body position. Aviat Space Environ Med 65: 747–751Google Scholar
  42. Golding JF, Markey HM (1996) Effect of frequency of horizontal linear oscillation on motion sickness and somatogravic illusion. Aviat Space Environ Med 67: 121–126PubMedGoogle Scholar
  43. Golding JF, Stott JRR (1997) Objective and subjective time courses of recovery from motion sickness assessed by repeated motion challenges. J Vestib Res 7: 421–428PubMedCrossRefGoogle Scholar
  44. Goltz F (1870) Über die physiologische Bedeutung der Bogengänge des Ohrlabyrinths. Pflügers Arch Ges Physiol 3: 172–192CrossRefGoogle Scholar
  45. Gordon CR, Ben-Aryeh H, Spitzer O, Doweck I, Gonen A, Melamed Y, Shupak A (1994) Seasickness susceptibility, personality factors, and salivation. Aviat Space Environ Med 65: 610–614PubMedGoogle Scholar
  46. Gordon CR, Spitzer O, Doweck I, Melamed Y, Shupak A (1995) Clinical features of mal de debarquement: adaptation and habituation to sea conditions. J Vestib Res 5: 363–369PubMedCrossRefGoogle Scholar
  47. Gordon CR, Spitzer O, Doweck I, Shupak A, Gadoth N (1996) The vestibulo-ocular reflex and seasickness susceptibility. J Vestib Res 6: 229–233PubMedCrossRefGoogle Scholar
  48. Graybiel A (1964) Vestibular sickness and some of its implications for space flight. In: Fields WS, Alfords BR (eds) Neurological aspects of auditory and vestibular disorders. CC Thomas, Springfield, IllGoogle Scholar
  49. Graybiel A (1970) Susceptibility to acute motion sickness in blind persons. Aerospace Med 41: 650–653PubMedGoogle Scholar
  50. Graybiel A (1979) Prevention and treatment of space sickness in shuttle-orbiter missions. Aviat Space Environ Med 50: 171–176PubMedGoogle Scholar
  51. Graybiel A, Miller EF, Homick JL (1977) Experiment M 131: Human vestibular function. In: Biomedical results from skylab, NASA Sp. 377, Washington DC, pp 74–103Google Scholar
  52. Graybiel A, Wood CD, Miller EF, Cramer DB (1968) Diagnostic criteria for grading the severity of acute motion sickness. Aerospace Med 39: 453–455PubMedGoogle Scholar
  53. Guedry SE (1965) Orientation of the rotation-axis relative to gravity: its influence on nystagmus and the sensation of rotation. Acta Otolaryngol (Stockh) 60: 30–48CrossRefGoogle Scholar
  54. Häusler R (1995) Ski sickness. Acta Otolaryngol (Stockh) 115: 1–2CrossRefGoogle Scholar
  55. Hill J (1937) The care of the seasick. Br Med J: 802–807Google Scholar
  56. Holst E von, Mittelstaedt H (1950) Das Reafferenzprinzip ( Wechselwirkungen zwischen Zentralnervensystem and Peripherie ). Naturwissenschaften 37: 464–476Google Scholar
  57. Holtmann S, Clarke AH, Scherer H, Höhn M (1989) The anti-motion sickness mechanism of ginger. Acta Otolaryngol (Stockh) 108: 168–174CrossRefGoogle Scholar
  58. Igarashi M, Isago H, 0-Uchi T, Kulecz WB, Homick JL, Reschke MF (1983) Vestibular-visual conflict sickness in the squirrel monkey. Acta Otolaryngol (Stockh) 95: 193–198CrossRefGoogle Scholar
  59. Igarashi M, Kobayashi K, Kulecz WB, Isago H (1986a) Vestibular-visual conflict in pitch and yaw planes in the squirrel monkey. Aviat Space Environ Med 57: 1071–1074PubMedGoogle Scholar
  60. Igarashi M, Kobayashi K, Kulecz WB, Himi T (1986b) Changes in susceptibility to vestibular-visual conflict sickness in monkeys by repeated exposure. Acta Otolaryngol (Stockh) 102: 432–437CrossRefGoogle Scholar
  61. Irwin JA (1881) The pathology of seasickness. Lancet 2: 907–909CrossRefGoogle Scholar
  62. Isaacs B (1957) The influence of head and body position on the emetic action of apomorphine in man. Clin Sci 16: 215–221PubMedGoogle Scholar
  63. Isu N, Yanagihara MA, Mikuni T, Koo J (1994) Coriolis effects are principally caused by gyroscopic angular acceleration. Aviat Space Environ Med 65: 627–631PubMedGoogle Scholar
  64. James W (1882) The sense of dizziness in deaf-mutes. Am J Otol 4: 239–254Google Scholar
  65. Johnson WH, Taylor NBG (1961) The importance of head movements in studies involving stimulation of the organ of balance. Acta Otolaryngol (Stockh) 53: 211–218CrossRefGoogle Scholar
  66. Johnson WH, Meek JC, Graybiel A (1962) Effects of labyrinthectomy on canal sickness in squirrel monkey. Ann Otol Rhinol Laryngol 71: 289–298PubMedGoogle Scholar
  67. Jozsvai EE, Pigeau RA (1996) The effect of autogenic training and biofeedback on motion sickness tolerance. Aviat Space Environ Med 67: 963–968PubMedGoogle Scholar
  68. Kamath B, Curran J, Hawkey C, Beattie A, Gorbutt N, Guiblin H, Kong A (1990) Anaesthesia, movement and emesis. Br J Anaesth 64: 728–730PubMedCrossRefGoogle Scholar
  69. Kennedy RS, Graybiel A, McDonough RC, Beckwith FD (1968) Symptomatology under storm conditions in the North Atlantic in control subjects and in persons with bilateral labyrinth defects. Acta Otolaryngol (Stockh) 66: 533–540CrossRefGoogle Scholar
  70. Kennedy RS, Lane NE, Lilienthal MG Berbaum KS, Hettinger LJ (1992) Profile analysis of simulator sickness symptoms: application to virtual environment systems. Presence 1: 295–301Google Scholar
  71. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3: 203–220CrossRefGoogle Scholar
  72. Kurashvili AE (1963) Vestibular reactivity during the cumulative action of slow centripetal accelerations. Office of Technical Services, FTD-MT-63–179Google Scholar
  73. Lackner JR, Graybiel A (1974) Elicitation of vestibular side effects by regional vibration of the head. Aerospace Med 45: 1267–1272PubMedGoogle Scholar
  74. Lackner JR, Graybiel A (1979) Some influences of vision on susceptibility to motion sickness. Aviat Space Environ Med 50: 1122–1125PubMedGoogle Scholar
  75. Lackner JR, Graybiel A (1986a) Sudden emesis following parabolic flight maneuvers: implications for space motion sickness. Aviat Space Environ Med 57: 343–347PubMedGoogle Scholar
  76. Lackner JR, Graybiel A (1986b) Head movements in non-terrestrial force environments elicit motion sickness: implications for the etiology of space motion sickness. Aviat Space Environ Med 57: 443–448PubMedGoogle Scholar
  77. Lackner JR, Graybiel A, DiZio P (1991) Altered sensorimotor control of the body as an etiological factor in space motion sickness. Aviat Space Environ Med 62: 765–771PubMedGoogle Scholar
  78. Lawther A, Griffin MJ (1988) A survey of the occurrence of motion sickness amongst passengers at sea. Aviat Space Environ Med 59: 399–406PubMedGoogle Scholar
  79. Leger A, Money KE, Landolt JP, Cheung BS, Rodden BE (1981) Motion sickness caused by rotations about earth-horizontal and earth-vertical axes. J Appl Physiol 50: 469–477PubMedGoogle Scholar
  80. Leibowitz HW, Post RB, Brandt Th, Dichgans J (1982) Implications of recent developments in dynamic spatial orientation and visual resolution for vehicle guidance. In: Wertheim AH, Wagenaar WA, Leibowitz HW (eds) Tutorials on motion perception. Plenum Press, New York, pp 231–260CrossRefGoogle Scholar
  81. Leigh RJ, Daroff RB (1985) Space motion sickness: Etiological hypotheses and a proposal for diagnostic clinical examination. Aviat Space Environ Med 56: 469–473Google Scholar
  82. Llano GA (1955) Airmen against the sea-an analysis of sea survival experiences. Maxwell AFB, Research Studies Institute, ADTIC Publ G-104Google Scholar
  83. Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Engelmann, LeipzigGoogle Scholar
  84. Manning GW, Steward WG (1949) Effect of body position on incidence of motion sickness. J Appl Physiol 1: 619–628PubMedGoogle Scholar
  85. Marshall JE, Brown JH (1966) Visual arousal interaction and specificity of nystagmic habituation. US Army Medical Research Laboratory, Fort Knox, Report No 688Google Scholar
  86. McCauley ME (1984) Research issues in simulator sickness. Proceedings of a workshop. National Academy Press, Washington, DCGoogle Scholar
  87. McNally WJ, Stuart EA, Morton G (1942) Effect of labyrinthectomy on motion sickness in animals. In: Proceedings of the conference on motion sickness. National Research Council of Canada Toronto, Report No. C-748Google Scholar
  88. Mehler WR (1983) Observations on the connectivity of the parvicellular reticular formation with respect to a vomiting centre. Brain Behav Evol 23: 63–80PubMedCrossRefGoogle Scholar
  89. Melvill Jones G, Mandl G (1980) “Motion” sickness due to vision reversal: its disappearance in stroboscopic light. Ann NY Acad Sci 374:303–311Google Scholar
  90. Miller AD, Nonaka S, Jakus J (1994) Brain areas essential or nonessential for emesis. Brain Res 647: 255–264PubMedCrossRefGoogle Scholar
  91. Miller AD, Nonaka S, Jakus J, Yates BJ (1996) Modulation of vomiting by the medullary midline. Brain Res 737: 51–58PubMedCrossRefGoogle Scholar
  92. Miller EF, Graybiel A (1972) Semicircular canals as a primary etiological factor in motion sickness. Aerospace Med 43: 1065–1074PubMedGoogle Scholar
  93. Mittelstaedt H (1996) Somatic graviception. Biol Psychol 42:53–74 Money KE (1970) Motion sickness. Physiol Rev 50: 1–39Google Scholar
  94. Money KE (1990) Motion sickness and evolution. In: Crampton GH (ed) Motion and space sickness. CRC Press, Boca Raton, pp 1–7Google Scholar
  95. Money KE, Friedberg 1 (1964) The role of the semicircular canals in causation of motion sickness and nystagmus in the dog. Can J Physiol Pharmacol 42: 793–801CrossRefGoogle Scholar
  96. Money KE, Cheung BS (1983) Another function of the inner ear: facilitation of the emetic response to poisons. Aviat Space Environ Med 54: 208–211PubMedGoogle Scholar
  97. Mori S, Mitarai G, Takabayashi A, Usui S, Sakakibara M, Nagatomo M, Baumgarten RJ von (1996) Evidence of sensory conflict and recovery in carp exposed to prolonged weightlessness. Aviat Space Environ Med 67: 256–261PubMedGoogle Scholar
  98. Nakazawa K, Zheng Y, Umezaki T, Miller AD (1997) Vestibular inputs to bulbar respiratory interneurons in the cat. Neuro Report 8: 3395–3398Google Scholar
  99. Norfleet WT, Degioanni JJ, Calkins DS, Reschke MF, Bungo MW, Kutyna FA, Homick JL (1992) Treatment of motion sickness in parabolic flight with buccal scopolamine. Aviat Space Environ Med 63: 46–51PubMedGoogle Scholar
  100. Oman CM (1982) A heuristic mathematical model for the dynamics of sensory conflict and motion sickness. Acta Otolaryngol (Stockh) Suppl 392: 1–44Google Scholar
  101. Parker DE, Reschke MF, Gierke HE von, Lessard CS (1987) Effects of proposed preflight adaptation training on eye movements, self-motion perception, and motion sickness, a progress report. Aviat Space Environ Med 58: 42–49Google Scholar
  102. Parrot AC (1989) Transdermal scopolamine: a review of its effects upon motion sickness, psychological performance, and physiological functioning. Aviat Space Environ Med 60: 1–9Google Scholar
  103. Probst T, Krafczyk S, Büchele W, Brandt T (1982) Visuelle Prävention der Bewegungskrankheit im Auto. Arch Psychiat Nervenkr 231: 409–421PubMedCrossRefGoogle Scholar
  104. Reason JT (1978) Motion sickness adaptation: a neural mismatch model. J Roy Soc Med 71: 819–829PubMedGoogle Scholar
  105. Reason JT, Graybiel A (1970) Changes in subjective estimates of well-being during the onset and remission of motion sickness symptomatology in the slow rotation room. Aerospace Med 41: 166–171PubMedGoogle Scholar
  106. Riccio GE, Stoffregen TA (1991) An ecological theory of motion sickness and postural instability. Ecol Psychol 3: 195–240CrossRefGoogle Scholar
  107. Riding JE (1975) Minor complications of general anaesthesia. Br J Anaesth 47: 91–101PubMedCrossRefGoogle Scholar
  108. Schubert G (1931) Über die physiologischen Auswirkungen der Coriolis-Kräfte bei Trudelbewegungen des Flugzeuges. Acta Otolaryngol (Stockh) 16: 39–47CrossRefGoogle Scholar
  109. Siniaia MS, Miller AD (1996) Vestibular effects on the upper airway musculature. Brain Res 736: 160–164PubMedCrossRefGoogle Scholar
  110. Sjöberg AA (1931) Experimentelle Studien über den Auslösungsmechanismus der Seekrankheit. Acta Otolaryngol (Stockh) Suppl 14: 136Google Scholar
  111. Stern RM, Hu S, Vasey MW, Koch KL (1989) Adaptation to vection-induced symptoms of motion sickness. Aviat Space Environ Med 60: 566–572PubMedGoogle Scholar
  112. Stevens SS (1957) On the psychophysical law. Psychol Rev 64: 153–181PubMedCrossRefGoogle Scholar
  113. Stoffregen TA, Riccio GE (1991) An ecological critique of the sensory conflict theory of motion sickness. Ecol Psychol 3: 159–194CrossRefGoogle Scholar
  114. Stout CS, Toscano WB, Cowings PS (1995) Reliability of psychophysiological responses across multiple motion sickness stimulation tests. J Vestib Res 5: 25–33PubMedCrossRefGoogle Scholar
  115. Takahashi M, Ogata M, Miura M (1997) The significance of motion sickness in the vestibular system. J Vestib Res 7: 179–187PubMedCrossRefGoogle Scholar
  116. Takahashi M, Saito A, Okada Y, Takei Y, Tomizawa I, Uyama K, Kanzaki J (1991) Locomotion and motion sickness during horizontally and vertically reversed vision. Aviat Space Environ Med 62: 136–140PubMedGoogle Scholar
  117. Takahashi M, Toriyabe I, Takei Y, Kanzaki J (1994) Study on experimental motion sickness in children. Acta Otolaryngol (Stockh) 114: 231–237CrossRefGoogle Scholar
  118. Takeda N, Morita M, Hasegawa S, Horii A, Kubo T, Matsunaga T (1993) Neuropharmacology of motion sickness and emesis. Acta Otolaryngol (Stockh) Suppl 501: 10–15CrossRefGoogle Scholar
  119. Tiande Y, Jingshen P (1991) Motion sickness severity under interaction of vection and head movements. Aviat Space Environ Med 62: 141–144Google Scholar
  120. Tokola O, Laitinen LA, Aho J, Gothoni G, Vapaatalo H (1984) Drug treatment of motion sickness: scopolamine alone and combined with ephedrine in real and simulated situations. Aviat Space Environ Med 55: 636–641PubMedGoogle Scholar
  121. Toscano WV, Cowings PS (1982) Reducing motion sickness: A comparison of autogenic-feedback training and an alternative cognitive task. Aviat Space Environ Med 53: 449–453Google Scholar
  122. Treisman, M (1977) Motion sickness: an evolutionary hypothesis. Science 197: 493–495PubMedCrossRefGoogle Scholar
  123. Tyler DB (1946) The influence of placebo, body position, and medication on motion sickness. Am J Physiol 146: 458–466PubMedGoogle Scholar
  124. Tyler DB, Bard P (1949) Motion sickness. Physiol Rev 29:311–369 Umezaki T, Zheng Y, Shiba K, Miller AD (1997) Role of nucleus retroambigualis in respiratory reflexes evoked by superior laryngeal and vestibular nerve afferents and in emesis. Brain Res 769: 347–356Google Scholar
  125. Wang SC, Chinn HJ (1956) Experimental motion sickness in dogs. Importance of labyrinth and vestibular cerebellum. Am J Physiol 185: 617–623Google Scholar
  126. Watcha MF, White PF (1992) Postoperative nausea and vomiting. Its etiology, treatment, and prevention. Anesthesiology 77: 162–184Google Scholar
  127. Wood CD, Graybiel A (1968) Evaluation of sixteen anti-motion sickness drugs under controlled laboratory conditions. Aerospace Med 39: 1341–1344PubMedGoogle Scholar
  128. Wood CD, Graybiel A (1970) Evaluation of anti-motion sickness drugs: A new effective remedy revealed. Aerospace Med 41: 932–933Google Scholar
  129. Wood CD, Graybiel A, McDonough R (1966a) Human centrifuge studies on the relative effectiveness of some anti-motion sickness drugs. Aerospace Med 37: 187–190PubMedGoogle Scholar
  130. Wood CD, Graybiel A, Kennedy RS (1966b) Comparison of effectiveness of some antimotion sickness drugs using recommended and larger than recommended doses as tested in the slow rotation room. Aerospace Med 37: 259–262PubMedGoogle Scholar
  131. Wood CD, Kennedy RE, Graybiel A, Trumbull R, Wherry RJ (1966c) Clinical effectiveness of anti-motion sickness drugs. JAMA 198: 1155–1158PubMedCrossRefGoogle Scholar
  132. Wood CD, Manno JE, Manno BR, Redetzki HM, Wood M, Vekovius A (1984) Side effects of antimotion sickness drugs. Aviat Space Environ Med 55: 113–116PubMedGoogle Scholar
  133. Wood CD, Stewart JJ, Wood MJ, Manno JE, Manno BR, Mims ME (1990) Therapeutic effects of antimotion sickness medications on the secondary symptoms of motion sickness. Aviat Space Environ Med 61: 157–161PubMedGoogle Scholar
  134. Woodman PD, Griffin MJ (1997) Effect of direction of head movement on motion sickness caused by Coriolis stimulation. Aviat Space Environ Med 68: 93–98PubMedGoogle Scholar
  135. Yates BJ, Miller AD (1996) Vestibular respiratory regulation. In: Miller AD, Bianchi AL, Bishop BP (eds) Neural control of the respiratory muscles. CRC Press, Boca Raton, pp 271–282Google Scholar
  136. Yates BJ, Miller AD (1998) Physiological evidence that the vestibular system participates in autonomic and respiratory control. J Vestib Res 8: 17–25PubMedCrossRefGoogle Scholar
  137. Zheng Y, Umezaki T, Nakazawa K, Miller AD (1997) Role of pre-inspiratory neurons in vestibular and laryngeal reflexes and in swallowing and vomiting. Neurosci Lett 225: 161–164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2003

Authors and Affiliations

  • Thomas Brandt
    • 1
  1. 1.Neurologische Klinik, Klinikum GroßhadernLudwig-Maximillians-UniversitätMunichGermany

Personalised recommendations