Skip to main content

Vestibular cortex: its locations, functions, and disorders

  • Chapter
Vertigo

Abstract

The two major cortical functions of the vestibular system are spatial orientation and self-motion perception. These functions, however, are not exclusively vestibular; they also rely on visual and somatosensory input. All three systems (vestibular, visual and somatosensory) provide us with redundant information about the position and motion of our body relative to the external space. Although the vestibular cortex function is distributed among several multisensory areas in the parietal and temporal cortices, it is also integrated in a larger network for spatial attention and sensorimotor control of eye and body motion in space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akbarian S, Grasser O-J, Guldin WO (1992) Thalamic connections of the vestibular cortical fields in the squirrel monkey (Saimiri sciureus). J Comp Neurol 325: 1–19

    Article  Google Scholar 

  • Akbarian S. Grüsser O-J, Guldin WO (1994) Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey. J Comp Neurol 339: 421–437

    Google Scholar 

  • Andersen RA (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Mountcastle VB, Plum F, Geiger SR (eds) Handbook of physiology. Section I: the nervous system, vol V. American Physiological Society, Bethesda, MD, pp 483–518

    Google Scholar 

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230: 456–458

    Article  PubMed  CAS  Google Scholar 

  • Andersen RA, Gnadt JW (1989) Posterior parietal cortex. In: Wurtz RH, Goldberg ME, (eds). Reviews in oculomotor research. 3. The neurobiology of saccadic eye movements. Elsevier, Amsterdam, pp 315–335

    Google Scholar 

  • Beschin N, Cocchini G, Della Sala S, Logie RH (1997) What the eyes perceive, the brain ignores: a case of pure unilateral representational neglect. Cortex 33: 3–26

    Article  PubMed  CAS  Google Scholar 

  • Bisiach E, Rusconi ML, Peretti VA, Vallar G (1994) Challenging current accounts of unilateral neglect. Neuropsychologia 32: 1431–1434

    Article  PubMed  CAS  Google Scholar 

  • Bottini G, Sterzi R, Paulesu E, Vallar G, Cappa SF, Erminio F, Passingham RE, Frith CD, Frackowiak RSJ (1994) Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp Brain Res 99: 164–169

    Article  PubMed  CAS  Google Scholar 

  • Brandt Th (1997) The cortical matching of visual and vestibular 3-D coordinate maps. Ann Neurol 42: 983–984

    Article  PubMed  CAS  Google Scholar 

  • Brandt Th, Dichgans J, Koenig E (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp Brain Res 16: 476–491

    Article  PubMed  CAS  Google Scholar 

  • Brandt Th, Bötzel K, Yousry T, Dieterich M, Schultze S (1995) Rotational vertigo in embolic stroke of the vestibular and auditory cortices. Neurology 45: 42–44

    Article  PubMed  CAS  Google Scholar 

  • Brandt Th, Bartenstein P, Janek A, Dieterich M (1998a) Reciprocal inhibitory visual-vestibular interaction: visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121: 1749–1758

    Article  PubMed  Google Scholar 

  • Brandt Th, Bucher SF, Seelos KC, Dieterich M (1998b) Bilateral fMRI-activation of motion-sensitive areas MT/MST in homonymous hemianopia. Arch Neurol 55: 1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Bucher SF, Dieterich M, Seelos KC, Brandt Th (1997) Sensorimotor cerebral activation during optokinetic nystagmus. A functional MRI study. Neurology 49: 1370–1377

    Google Scholar 

  • Bucher SF, Dieterich M, Wiesmann M, Weiss A, Zink R, Yousry TA, Brandt T (1998) Cerebral functional magnetic resonance imaging of vestibular, auditory, and nociceptive areas during galvanic stimulation. Ann Neurol 44: 120–125

    Article  PubMed  CAS  Google Scholar 

  • Büttner U, Buettner UW (1978) Parietal cortex area 2 V neuronal activity in the alert monkey during natural vestibular and optokinetic stimulation. Brain Res 153: 392–397

    Article  PubMed  Google Scholar 

  • Cappa S, Sterzi R, Vallar G, Bisiach E (1987) Remission of hemineglect and anosognosia during vestibular stimulation. Neuropsychologia 25: 775–782

    Article  PubMed  CAS  Google Scholar 

  • Coslett HB (1997) Neglect in vision and visual imagery: a double dissociation. Brain 120: 1163–1171

    Article  PubMed  Google Scholar 

  • Dichgans J, Brandt Th (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. In: R Held, HW Leibowitz, H-L Teuber (eds) Handbook of sensory physiology, vol VIII Perception, Springer, Berlin Heidelberg New York, pp 755–804

    Google Scholar 

  • Dieterich M, Brandt Th (1993) Thalamic infarctions: differential effects on vestibular function of the roll plan (35 patients). Neurology 43: 1732–1740

    Article  PubMed  CAS  Google Scholar 

  • Dieterich M, Brandt Th, Bartenstein P, Wenzel R, Danek A, Lutz S, Ziegler S (1996) Different vestibular cortex areas activated during caloric irrigation: A PET study. J Neurol Suppl 2 243: S40

    Google Scholar 

  • Dieterich M, Bucher SF, Seelos KC, Brandt Th (1998a) Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. Brain 121: 1479–1495

    Google Scholar 

  • Dieterich M, Grünbauer W, Brandt Th (1998b) Direction-specific impairment of motion perception and spatial orientation in downbeat and upbeat nystagmus. Neurosci Lett 245: 29–32

    Article  PubMed  CAS  Google Scholar 

  • Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey ( Macaca fascicularis ). J Comp Neurol 280: 1–14

    Google Scholar 

  • Foerster 0 (1936) Sensible Kortikale Felder. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol Vl. Springer, Berlin Heidelberg New York, pp 358–449

    Google Scholar 

  • Fredrickson JM, Figge U, Scheid P, Kornhuber HH (1966) Vestibular nerve projection to the cerebral cortex of the rhesus monkey. Exp Brain Res 2: 318–327

    Article  PubMed  CAS  Google Scholar 

  • Friberg L, Olsen TS, Roland PE, Paulson OB, Lassen NA (1985) Focal increase of blood flow in the cerebral cortex of man during vestibular stimulation. Brain 108: 609–623

    Article  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1993) Parietal neurons encoding spatial orientations in craniotopic coordinates. Exp Brain Res 96: 221–229

    Article  PubMed  CAS  Google Scholar 

  • Gerstmann J (1926) Über eine eigenartige Orientierungsströrung im Raum bei zerebraler Erkrankung. Wien med Wochenschr 76: 817–818

    Google Scholar 

  • Glasauer S, Mittelstaedt H (1992) Determinants of orientation in microgravity. Acta Astronautica 27: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Grüsser O-J, Guldin WO (1995) Primate vestibular cortices and spatial orientation. In: Mergner T, Hlavacka F (eds) Multi-sensory control of posture. Plenum Press, New York, pp 51–62

    Chapter  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990a) Localization and responses of neurons in the parieto-insular vestibular cortex of the awake monkeys (Macaca fascicularis). J Physiol 430: 537–557

    PubMed  Google Scholar 

  • Grüsser OJ, Pause M, Schreiter U (1990b) Vestibular neurons in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J Physiol 430: 559–583

    PubMed  Google Scholar 

  • Guldin WO, Akbarian S, Grüsser O-J (1992) Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J Comp Neurol 324: 1–27

    Article  Google Scholar 

  • Guldin W, Grasser O-J (1996) The anatomy of the vestibular cortices of primates. In: M. Collard, M. Jeannerod, Y. Christen (eds) Le cortex vestibulaire. Ipsen, Boulogne, pp 17–26

    Google Scholar 

  • Halpern F (1930) Kasuistischer Beitrag zur Frage des Verkehrtsehens. Z gesamt Neurol Psychiat 126: 246–252

    Article  Google Scholar 

  • Husain M, Kennard C (1996) Visual neglect associated with frontal lobe infarction. J Neurol 243: 652–657

    Article  PubMed  CAS  Google Scholar 

  • Jeannerod M (1996) Vestibular cortex. A network from directional coding of behavior. In: M. Collard, M. Jeannerod, Y. Christen (eds) Le cortex vestibulaire. Ipsen, Boulogne, pp 5–15

    Google Scholar 

  • Jijiwa H, Kawaguchi T, Watanabe S, Miyata H (1991) Cortical projections of otolith organs in the cat. Acta Otolaryngol (Stockh) Suppl 481: 69–72

    Article  CAS  Google Scholar 

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of insular, parietal and temporal opercular regions of primates. J Comp Neurol 168: 197–247

    Article  PubMed  CAS  Google Scholar 

  • Karnath H-O (1994) Subjective body orientation in neglect and the interactive contribution of neck muscle proprioception and vestibular stimulation. Brain 117: 1001–1012

    Article  PubMed  Google Scholar 

  • Karnath H-O, Schenkel P, Fischer B (1991) Trunk orientation as the determining factor of the “contralateral” deficit in the neglect syndrome and as the physical anchor of the internal representation of body orientation in space. Brain 114: 1997–2014

    Article  PubMed  Google Scholar 

  • Karnath H-0, Christ K, Hartje W (1993) Decrease of contralateral neglect by neck muscle vibration and spatial orientation of trunk midline. Brain 116: 383–396

    Article  PubMed  Google Scholar 

  • Kawano K, Sasaki M, Yamashita M (1980) Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci Lett 17: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Klopp H (1951) Über Umgekehrt-und Verkehrtsehen. Deutsch Zeitschr Nervenheilk 165: 231–260

    CAS  Google Scholar 

  • Kohler I (1956) Die Methode des Brillenversuches in der Wahrnehmungspsychologie mit Bemerkungen zur Lehre der Adaptation. Z Exp Angew Psychol 3: 381–417

    Google Scholar 

  • Kolev OI (1995) Visual hallucinations evoked by caloric vestibular stimulation in normal humans. J Vestib Res 5: 19–23

    Article  PubMed  CAS  Google Scholar 

  • Maeshima S, Terada T, Nakai K, Nishibayashi H, Ozaki F, Itakura T, Komai N (1995) Unilateral spatial neglect due to a haemorrhagic contusion in the right frontal lobe. J Neurol 242: 613–617

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10: 309–325

    Article  PubMed  CAS  Google Scholar 

  • Mickle WA, Ades HW (1952) A composite sensory projection area in the cerebral cortex of the cat. Am J Physiol 170: 682–689

    PubMed  CAS  Google Scholar 

  • Munk MHJ, Nowak LG, Nelson JI, Bullier J (1995) Structural basis of cortical synchronization. II. Effects of cortical lesions. J Neurophysiol 74: 2401–2414

    Google Scholar 

  • Nobre AC, Sebestyen GN, Gitelman DR, Mesulam MM, Frackowiak RSJ, Frith CD (1997) Functional localization of the system for visuospatial attention using positron emission tomography. Brain 120: 515–533

    Article  PubMed  Google Scholar 

  • Nowak LG, Munk MHJ, Nelson JI, James AC, Bullier J (1995) Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J Neurophysiol 74: 2379–2400

    Google Scholar 

  • Ödkvist LM, Schwarz DWF, Fredrickson JM, Hassler R (1974) Projection of the vestibular nerve to the area 3a arm field in the squirrel monkey (Saimiri sciureus) Exp Brain Res 21: 97–105

    PubMed  Google Scholar 

  • Pandya DN, Sanides F (1973) Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z Anat Entwicklungsg 139: 127–161

    Article  CAS  Google Scholar 

  • Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little Brown, Boston

    Google Scholar 

  • Penfield W, Kristiansen K (1951) Epileptic seizure patterns. Thomas, Springfield, IL

    Google Scholar 

  • Phillips CG, Powell TPS, Wiesendanger M (1971) Projection from low threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol (Lond) 217: 419–446

    CAS  Google Scholar 

  • Probst Th, Straube A, Bles W (1985) Differential effects of ambivalent visual-vestibular-somatosensory stimulation on the perception of self motion. Behav Brain Res 16: 71–79

    Article  PubMed  CAS  Google Scholar 

  • Rapcsak SZ, Cimino CR, Heilman KM (1988) Altitudinal neglect. Neurology 38: 277–281

    Article  PubMed  CAS  Google Scholar 

  • Robertson IH, Tegnér R, Goodrich SI, Wilson C (1994) Walking trajectory and hand movements in unilateral left neglect: a vestibular hypothesis. Neuropsychologia 32: 1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DWF, Fredrickson JM (1971) Rhesus monkey vestibular cortex: a bimodal primary projection field. Science 172: 280–281

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DWF, Deecke L, Fredrickson JM (1973) Cortical projection of group I muscle afferents to areas 2, 3a and the vestibular field in the rhesus monkey. Exp Brain Res 17: 516–526

    Article  PubMed  CAS  Google Scholar 

  • Shelton PA, Bowers D, Heilman KM (1990) Peripersonal and vertical neglect. Brain 113: 191–205

    Article  PubMed  Google Scholar 

  • Smith BH (1960) Vestibular disturbance in epilepsy. Neurology 10: 465–469

    Article  PubMed  CAS  Google Scholar 

  • Solms M, Kaplan-Solms M, Saling M, Miller P (1988) Inverted vision after frontal lobe disease. Cortex 24: 499–509

    PubMed  CAS  Google Scholar 

  • Tiecks FP, Planck J, Haberl RL, Brandt T (1996) Reduction in posterior cerebral artery blood flow velocity during caloric vestibular stimulation. J Cerebr Blood Flow Metab 16: 1379–1382

    CAS  Google Scholar 

  • Tiliket C, Ventre-Dominey J, Vighetto A, Grochowicki M (1996) Room tilt illusion. A central otolith dysfunction. Arch Neurol 53: 1259–1264

    Google Scholar 

  • Vallar G, Perani D (1986) The anatomy of unilateral neglect after right hemisphere stroke lesions: a clinical CT correlation study in man. Neuropsychologia 24: 609–622

    Article  PubMed  CAS  Google Scholar 

  • Vallar G, Bottini G, Rusconi ML, Sterzi R (1993) Exploring somatosensory hemineglect by vestibular stimulation. Brain 116: 71–86

    Article  PubMed  Google Scholar 

  • Vallar G, Guariglia C, Nico D, Bisiach E (1995) Spatial hemineglect in back space. Brain 118: 467–472

    Article  PubMed  Google Scholar 

  • Vuilleumier P, Hester D, Assal G, Regli F (1996) Unilateral spatial neglect recovery after sequential strokes. Neurology 19: 184–189

    Article  Google Scholar 

  • Walzl EM, Mountcastle VB (1949) Projection of vestibular nerve to cerebral cortex of cat. Am J Physiol 159: 595

    Google Scholar 

  • Watt DGD (1997) Pointing at memorised targets during prolonged microgravity. Aviat Space Environm Med 68: 99–103

    CAS  Google Scholar 

  • Wenzel R, Bartenstein P, Dieterich M, Danek A, Weindl A, Minoshima S, Ziegler S, Schwaiger M, Brandt Th (1996) Deactivation of human visual cortex during involuntary ocular oscillations: A PET activation study. Brain 119: 101–110

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag London

About this chapter

Cite this chapter

Brandt, T. (2003). Vestibular cortex: its locations, functions, and disorders. In: Vertigo. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3801-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3801-8_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-40500-1

  • Online ISBN: 978-1-4757-3801-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics