Advertisement

Microstrip Patch Arrays

  • R. B. Waterhouse

Abstract

As a single radiating element, the microstrip patch antenna is g g generally classified as a low to moderate gain antenna with gains in the order of 5– 8 dBi in its conventional form (refer to Chapter 2). One critical advantage of the microstrip patch over its wire and metal counterparts, which is related to some of the features mentioned before, is the relative ease in which these structures can be integrated or combined to form an array of antennas. Utilizing printed technology to develop an array allows for fabricating the entire structure to be developed in a simple and low cost procedure. For this reason most terrestrial wireless systems incorporate arrays of microstrip patches. Figure 7.1.1 shows a photograph of a mobile communication base station that incorporates a linear array of microstrip patches.

Keywords

Radiation Pattern Return Loss Patch Antenna Microstrip Antenna Sidelobe Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    J. R. James, P. S. Hall and C. Wood, Microstrip Antenna Theory and Design, London, Peter Peregrinus, 1981.CrossRefGoogle Scholar
  2. [2]
    J. Huang, “A parallel-series-fed microstrip array with high efficiency and low crosspolarization,” Microwave Optical Technology Letts., vol. 5, pp. 230 – 233, May 1992.CrossRefGoogle Scholar
  3. [3]
    D. M. Pozar and B. Kaufman, “Design considerations for low sidelobe microstrip arrays,” IEEE Trans. Antennas & Propagation, vol. 38, pp. 1176 –1185, Aug. 1990.CrossRefGoogle Scholar
  4. [4]
    Ensemble 6.1, Ansoft, 1999.Google Scholar
  5. [5]
    D. M. Pozar, “The active element gain,” IEEE Trans. Antennas & Propagation, vol. 42, pp. 1176 –1178, Aug. 1994.CrossRefGoogle Scholar
  6. [6]
    R. J. Mailloux, J. F. Mcllvenna and N. P. Kernweis, “Microstrip array technology,” IEEE Trans. Antennas & Propagation, vol. 29, pp. 25 – 37, Jan. 1981.CrossRefGoogle Scholar
  7. [7]
    E. Levine, G. Malamud, S. Shtrikman and D. Treves, “A study of microstrip array antennas with the feed network,” IEEE Trans. Antennas & Propagation, vol. 37, pp. 426 – 434, April 1989.CrossRefGoogle Scholar
  8. [8]
    D. M. Pozar and D. H. Schaubert, “Comparison of three series fed microstrip array geometries,” IEEE Antennas & Propagation Symposium, Ann Arbor USA, pp. 728 – 731, July 1993.Google Scholar
  9. [9]
    C. A. Balanis, Antenna Theory: Analysis and Design, 2nd Edition, Wiley, New York, 1996.Google Scholar
  10. [10]
    D. M. Pozar and D. H. Schaubert, “Scan blindness in infinite arrays of printed dipoles,” IEEE Trans. Antennas & Propagation, vol. 32, pp. 602 – 610, June 1984.CrossRefGoogle Scholar
  11. [11]
    D. M. Pozar, “Scanning characteristics of infinite arrays of printed antenna subarrays,” IEEE Trans. Antennas & Propagation, vol. 40, pp. 666 – 674, June 1992.CrossRefGoogle Scholar
  12. [12]
    D. Novak and R. B. Waterhouse, “Impedance behaviour and scan performance of microstrip patch arrays configurations suitable for optical beamforming networks,” IEEE Trans. Antennas & Propagation, vol. 42, pp. 432 – 435, Mar. 1994.CrossRefGoogle Scholar
  13. [13]
    R. B. Waterhouse and N.V. Shuley, “Scan performance of infinite arrays of microstrip patch elements loaded with varactor diodes,” IEEE Transactions Antennas & Propagation, vol. 41, pp.1273 –1280, Sept. 1993.CrossRefGoogle Scholar
  14. [14]
    F. Zavosh and J.T. Aberle, “Infinite phased arrays of cavity-backed patches”, IEEE Trans. Antenn. Propagat., vol. AP — 42, pp. 390–398, March 1994.CrossRefGoogle Scholar
  15. [15]
    R. B. Waterhouse, “Improving the scan performance of probe-fed microstrip patch arrays,” IEEE Transactions Antennas & Propagation, vol. 43, pp. 705 – 712, July 1995.CrossRefGoogle Scholar
  16. [16]
    R. B. Waterhouse, “The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays,” IEEE Transactions Antennas & Propagation, vol. 44, pp. 302 – 309, March 1996.CrossRefGoogle Scholar
  17. [17]
    A. Klouche-Djedid and M. Fujita, “Adaptive array sensor processing applications for mobile telephone communications”, IEEE Trans. Vehicular Technology, Vol. VT-45, Mar. 1996.Google Scholar
  18. [18]
    J. J. Schuss, J. Upton, B. Myers, T. Sikina, A. Rohwer, P. Makridakas, R. Francois, L. Wardle and R. Smith, “The IRIDIUM main mission antenna concept”, IEEE Trans. Antennas & Propagation, vol. AP-47, pp. 416 – 425, Mar. 1999.CrossRefGoogle Scholar
  19. [19]
    J. S. Herd, “Full wave analysis of proximity coupled rectangular microstrip antenna arrays”, Electromagnetics, Vol. 11, pp. 21– 46, Jan. 1991.CrossRefGoogle Scholar
  20. [20]
    J. J. Schuss, “Numerical design of patch radiator arrays”, Electromagnetics, Vol. 11, pp. 47 – 68, Jan. 1991.CrossRefGoogle Scholar
  21. [21]
    Y. Lubin and A. Hessel, “Wide-band, wide-angle microstrip stacked-patch-element phased arrays”, IEEE Trans. Antennas & Propagation, vol. AP-39, pp. 1062 –1070, Aug. 1991.CrossRefGoogle Scholar
  22. [22]
    J. T. Aberle, D. M. Pozar and J. Manges, “Phased arrays of probe-fed stacked microstrip patches”, IEEE Trans. Antennas & Propagation, vol. AP-42, pp. 920–927, July 1994.CrossRefGoogle Scholar
  23. [23]
    R. B. Waterhouse, “A novel technique for increasing the scanning range of infinite arrays of microstrip patches,” IEEE Microwave & Guided Wave Letters, vol. 3, pp.450 – 452, Dec. 1993.CrossRefGoogle Scholar
  24. [24]
    J. S. Herd, private communication Google Scholar
  25. [25]
    W. Menzel, D. Pilz and R. Leberer, “A 77 GHz FM/CW radar frontend with a lowprofile, low-loss printed antenna”, 1999 IEEE MTT-S International Microwave Symp., Anaheim, pp. 1485 –1488, June 1999.Google Scholar
  26. [26]
    Z. Ahmed, D. Novak, R. B. Waterhouse and H. F. Liu, “37 GHz Fiber-Wireless System for Distribution of Broadband Signals”, IEEE Trans. Microwave Theory & Techniques, pp. 1431–1435, Aug. 1997.Google Scholar
  27. [27]
    P. J. Hall, A. S. Mohan and R. S. Soretz, “Interference characterization at Australian astronomy sites”, lkT International Technical Workshop, Sydney Australia, p. 37, Dec. 1997.Google Scholar
  28. [28]
    B. MacThomas, “An evolutionary approach to the development of the ‘Square Kilometre Array’, and related generalised antenna layouts and concepts”, ATNF Technical Document 39.3/087, 22 Jan. 1999.Google Scholar
  29. [29]
    T. Chio and D. H. Schaubert, “Effects of slotline cavity on dual-polarized tapered slot antenna arrays,” 1999 Antennas & Propagation International Symp., Orlando USA, pp. 130 –133, July 1999.Google Scholar
  30. [30]
    D. M. Pozar, “Analysis of an infinite phased array of aperture coupled microstrip patches,” IEEE Trans. Antenna Propagat., vol. 37, pp. 418 – 424, April 1989.CrossRefGoogle Scholar
  31. [31]
    N. K. Das and D. M. Pozar, “A generalized spectral domain Green’s function for multilayer dielectric substrates with applications to multilayered transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 35, pp. 326 – 335, Mar. 1987.CrossRefGoogle Scholar
  32. [32]
    D. M. Pozar, “A reciprocity method of analysis for printed slot coupled microstrip antennas,” IEEE Trans. Antenna Propagat., vol. 34, pp. 1439 –1446, Dec. 1986.CrossRefGoogle Scholar
  33. [33]
    L. Mall and R. B. Waterhouse, “Millimeter-wave proximity-coupled microstrip antenna on an extended hemispherical dielectric lens,” IEEE Transactions on Antennas & Propagation, vol. 49, pp. 1769 –1772, Dec. 2001.CrossRefGoogle Scholar
  34. [34]
    D. M. Pozar, S. D. Targonski and H. D. Syrigos, “Design of millimeter-wave microstrip reflectarrays,” IEEE Trans. Antennas & Propagation, vol. 45, pp. 287 – 296, Feb. 1997.CrossRefGoogle Scholar
  35. [35]
    C.S. Malagisi, “Microstrip Disc Element Reflectarray”, Electronics and Aerospace Systems Convention, Sep. 1978.Google Scholar
  36. [36]
    T.A. Metzler, “Stub Loaded Microstrip Reflectarray”, IEEE AP-S International Symposium Digest, pp. 574–577,1995.Google Scholar
  37. [37]
    A. Kelkar, “FLAPS: Conformal Phased Reflecting Surfaces”, Proc. of IEEE National Radar Conference, pp. 58–62, March 1991.Google Scholar
  38. [38]
    S.D. Targonski and D.M. Pozar, “Analysis and Design of a Microstrip Reflectarray Using Patches of Variable Size”, IEEE AP-S International Symposium Digest, pp. 1820–1823, 1994.Google Scholar
  39. [39]
    S. Ohshima, Y. Asano, T. Harada, N. Yamada, M. Usui, H. Hayashi, T. Watanbe and H. Iizuka, “Phase-comparison monopulse radar with switched transmit beams for automotive application”, 1999 IEEE MTT-S International Microwave Symp., Anaheim, pp. 1493 –1496, June 1999.Google Scholar
  40. [40]
    A. Nirmalathas, C. Lim, D. Novak and R. B. Waterhouse, “Progress in millimeterwave fiber-radio access networks, ” (invited) Annals of Telecommunications, vol. 56, pp. 27 – 38, Jan./Feb. 2001.Google Scholar
  41. [41]
    D. A. Gray, “Optimal cell deployment for LMDS systems at 28 GHz”, Proc. Wireless Broadband Conf, Washington DC, July 1996.Google Scholar
  42. [42]
    D. F. Filipovic, S. G. Gearhart and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical Silicon dielectric lenses”, IEEE Trans. Microwave Theory & Techniques, vol. MTT – 41, pp. 1738–1749, Oct. 1993.CrossRefGoogle Scholar
  43. [43]
    D. F. Filipovic and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical Quartz dielectric lenses”, International Journal of Infrared and Millimeter Waves, vol. 14, pp. 1905–1924, 1993.CrossRefGoogle Scholar
  44. [44]
    J. Zmuidzinas and H. G. LeDuc, “Quasi-optical slot antenna SIS mixers,” IEEE Trans. Microwave Theory & Techniques, vol. MTT – 40, pp. 1797–1804, Sept. 1992.CrossRefGoogle Scholar
  45. [45]
    D. F. Filipovic, G. P. Gauthier, S. Raman and G. M. Rebeiz, “Off-axis properties of silicon and quartz dielectric lens antennas”, IEEE Trans. Antennas & Propagation, vol. AP – 45, pp. 760 – 766, May 1997.CrossRefGoogle Scholar
  46. [46]
    G. V. Eleftheriades, Y. Brand, J-F Zurcher and J. R. Mosig, “ALPSS: A millimetrewave aperture-coupled patch antenna on a substrate lens”, Electronics Letters, vol. 33, pp. 169–170, Jan . 1997.CrossRefGoogle Scholar
  47. [47]
    X. Wu, G. V. Eleftheriades and E. Van Deventer, “Design and characterization of single and multiple beam mm-wave circularly polarized lens antennas for wireless communications”, 1999 IEEE AP-S International Antennas & Propagation Symp., Orlando, pp: 1200 – 1204, July 1999.Google Scholar
  48. [48]
    P. Otero, G. V. Eleftheriades and J. R. Mosig, “Integrated modified rectangular loop slot antenna on substrate lenses for millimeter- and submillimeter-wave frequencies mixer applications”, IEEE Trans. Antennas & Propagation, vol. AP – 46, pp. 1489 – 1497, Oct. 1998.CrossRefGoogle Scholar
  49. [49]
    D. M. Pozar and S. M. Voda, “A rigorous analysis of a microstripline-fed patch antenna”, IEEE Trans. Antennas & Propagation, vol. AP – 35, pp. 1343–1349, Dec. 1987.CrossRefGoogle Scholar
  50. [50]
    D. M. Pozar, “Radiation and scattering from a microstrip patch on an uniaxial substrate”, IEEE Trans. Antennas & Propagation, vol. AP – 35, pp. 613 – 621, June 1987.CrossRefGoogle Scholar
  51. [51]
    R. C. Johnson and H. Jasik, “Antenna Engineering Handbook, 2”d Edition, Chapter 7, McGraw-Hill, 1984.Google Scholar
  52. [52]
    J. R. James and P. S. Hall, Handbook of Microstrip Antennas, Vol. 2, Chapter 20, Peter Peregrinus, 1989.CrossRefGoogle Scholar
  53. [53]
    D. I. Wu, “Omnidirectional circularly-polarized conformal microstrip array for telemetry applications”, Proc. IEEE Antennas & Propagat. Symp., pp. 998 – 1001, June 1995.Google Scholar
  54. [54]
    Rogers Corporation: http:/www.rogers-corp.com/mwu/litinbl.htm (Fabrication Information) Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • R. B. Waterhouse
    • 1
  1. 1.RMIT UniversityAustralia

Personalised recommendations