Advertisement

Advances in Quantum Detection

  • Julio I. Concha
  • H. Vincent Poor
Chapter
Part of the The Springer International Series in Engineering and Computer Science book series (SECS, volume 712)

Abstract

Some communication links, notably optical channels operating at very low power, are best modeled using quantum mechanics. Quantum signals are not described by stochastic processes, so that the classical theory of detection must be modified to deal with “quantum states”. Interest in such problems has risen in recent years due to the increasing attention on quantum information processing in general. This chapter reviews the basic mathematical formalism of quantum detection, and discusses several existing approaches to detector design. Both the Bayesian theory developed in the 70’s and more recent techniques are considered.

Keywords

Quantum State Coherent State Quantum Channel Density Operator Network Security 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Adami, ”Von Neumann capacity of noisy quantum channels,” Physical Review A, vol. 56, pp. 3470–3483, 1997.MathSciNetCrossRefGoogle Scholar
  2. [2]
    N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, vol. 2, Ungar, New York, 1963.Google Scholar
  3. [3]
    A. E. Allahverdyan and D. B. Saakian, Multi-access channels in quantum information theory, 1997. (e-print quant-ph/9712034).Google Scholar
  4. [4]
    A. E. Allahverdyan and D. B. Saakian, The broadcast quantum channel for classical information transmission, 1998. (e-print quantph/9805067).Google Scholar
  5. [5]
    J.-P. Aubin, Applied Functional Analysis, Wiley, New York, 2000.MATHCrossRefGoogle Scholar
  6. [6]
    M. Ban, K. Kurokawa, R. Momose, and O. Hirota, ”Optimum measurements for discrimination among symmetric quantum states and parameter estimation,” International Journal of Theoretical Physics, vol. 36, 1269–1288, 1997.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    S. M. Barnett, ”Quantum information via novel measurements,” Phil. Trans. R. Soc. Lond. A, vol. 355, pp. 2279, 1997.CrossRefGoogle Scholar
  8. [8]
    H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher, ”Noncommuting mixed states cannot be broadcast,” Physical Review Letters, vol. 76, pp. 2818, 1996.CrossRefGoogle Scholar
  9. [9]
    H. Barnum, M. A. Nielsen, and B. Schumacher, ”Information transmission through a noisy quantum channel,” Phys. Rev. A, vol. 57, pp. 4153–4175, 1998.CrossRefGoogle Scholar
  10. [10]
    V. P. Belavkin, ”Optimum distinction of non-orthogonal quantum signals,” Radiotekhnika i Elektronika, vol. 20, 1177, 1975.Google Scholar
  11. [10]
    V. P. Belavkin, English version: Radio Engineering and Electronic Physics, vol. 20, p. 39.Google Scholar
  12. [11]
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Mechanics, Cambridge University Press, Cambridge, 1987.MATHGoogle Scholar
  13. [12]
    C. H. Bennett and P. W. Shor, ”Quantum information theory,” IEEE Trans. Inform. Theory, vol. 44, pp. 2724, 1998.MathSciNetMATHCrossRefGoogle Scholar
  14. [13]
    J. Blank, P. Exner, and M. Havlicek, Hilbert Space Operators in Quantum Physics, AIP Press, New York, 1994.MATHGoogle Scholar
  15. [14]
    S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, 1994.MATHCrossRefGoogle Scholar
  16. [15]
    C. M. Caves and P. D. Drummond, ”Quantum limits in bosonic communication rates,” Reviews of Modern Physics, vol. 68, pp. 481, 1994.CrossRefGoogle Scholar
  17. [16]
    A. Chefles, ”Unambiguous discrimination between linearly independent quantum states,” Physics Letters A, vol. 239, pp. 339–347, 1998.MathSciNetMATHCrossRefGoogle Scholar
  18. [17]
    A. Chefles, ”Quantum state discrimination. Contemporary Physics,” vol. 41, pp. 401–424, 2000.CrossRefGoogle Scholar
  19. [18]
    A. Chefles and S. Barnett, ”Strategies for discriminating between non-orthogonal quantum states,” Journal of Modern Optics, vol. 45, 1295–1302, 1998.MathSciNetMATHCrossRefGoogle Scholar
  20. [19]
    J. I. Concha and H. V. Poor, ”An optimality property of the squareroot measurement for mixed states,” Sixth International Conference on Quantum Communication, Measurement and Computing, MIT, Cambridge, MA, July 22–26 2002.Google Scholar
  21. [20]
    J. I. Concha and H. V. Poor, ”Multiuser detection in quantum channels,” Proc. IEEE Intern. Symp. on Inform. Theory, pp. 276, Sorrento, Italy, June 25–30, 2000.Google Scholar
  22. [21]
    J. I. Concha and H. V. Poor, ”Least-squares detectors in quantum channels,” Proceedings of the 39th Annual Allerton Conference on Communications, Control, and Computing, pp. 328–337, University of Illinois, Urbana, IL, October 3–5, 2001.Google Scholar
  23. [22]
    J. Conway, A Course in Functional Analysis, Springer, New York, 2nd edition, 1990.MATHGoogle Scholar
  24. [23]
    T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley, New York, 1991.MATHCrossRefGoogle Scholar
  25. [24]
    E. B. Davies, ”Information and quantum measurement,” IEEE Trans. Inform. Theory, vol. 24, pp. 596, 1978.MathSciNetMATHCrossRefGoogle Scholar
  26. [25]
    Y. C. Eldar and G. David Forney, Jr., ”On quantum detection and the square-root measurement,” IEEE Trans. Inform. Theory, vol. 47, pp. 858–872, 2001.MathSciNetMATHCrossRefGoogle Scholar
  27. [26]
    Y. C. Eldar, A. Megretski, and G. C. Verghese, Designing optimal quantum detectors via semidenite programming, 2002. (e-print quant-ph/0205178).Google Scholar
  28. [27]
    C. W. Gardiner and P. Zoller, Quantum Noise, Springer, Berlin; Heidelberg, 2nd edition, 2000.MATHGoogle Scholar
  29. [28]
    C. W. Groetsch, Generalized Inverses of Linear Operators, Dekker, New York, 1977.MATHGoogle Scholar
  30. [29]
    R. O. Harger, editor, Optical Communication Theory, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1977.Google Scholar
  31. [30]
    P. Hausladen, R. Jozsa, B. Schumacher, M. Westmoreland, and W. Wootters, ”Classical information capacity of a quantum channel,” Physical Review A, vol. 54, pp. 1869, 1996.MathSciNetCrossRefGoogle Scholar
  32. [31]
    P. Hausladen and W. K. Wootters, ”A ‘pretty good’ measurement for distinguishing quantum states,” Journal of Modern Optics, vol. 41, pp. 2385, 1994.MathSciNetMATHCrossRefGoogle Scholar
  33. [32]
    C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, ”An interior point method for semidenite programming,” SIAM J. Optim., vol. 6, pp. 342–361, 1996.MathSciNetMATHCrossRefGoogle Scholar
  34. [33]
    C. W. Helstrom, Quantum Detection and Estimation Theory, Academic Press, New York, 1976.Google Scholar
  35. [34]
    C. W. Helstrom, ”Bayes-cost reduction algorithm in quantum hypothesis testing,” IEEE Trans. Inform. Theory, vol. 28, pp. 359, 1982.MathSciNetMATHCrossRefGoogle Scholar
  36. [35]
    A. S. Holevo, ”Statistical decision theory for quantum systems,” J. Multivar. Anal., vol. 3, pp. 337–394, 1973.MathSciNetMATHCrossRefGoogle Scholar
  37. [36]
    A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982.MATHGoogle Scholar
  38. [37]
    A. S. Holevo, ”The capacity of the quantum channel with general signal states,” IEEE Trans. Inform. Theory, vol. 44, pp. 269, 1998.MathSciNetMATHCrossRefGoogle Scholar
  39. [38]
    R. Horn and C. Johnson, Matrix Analysis, Cambdridge University Press, New York, 1985.MATHGoogle Scholar
  40. [39]
    M. Huang, Y. Zhang, and G. Hou, ”Classical capacity of a quantum multiple-access channel,” Phys. Rev. A, vol. 62, pp. 052–106, 2000.Google Scholar
  41. [40]
    B. Huttner, A. Muller, J. D. Gautier, H. Zbinden, and N. Gisin, ”Unambiguous quantum measurement of nonorthogonal states,” Physical Review A, vol. 54, pp. 3783–3789, 1996.MathSciNetCrossRefGoogle Scholar
  42. [41]
    B. Huttner and A. Peres, ”Quantum cryptography with photon pairs,” Journal of Modern Optics, vol. 41, pp. 2397–2403, 1994.MathSciNetMATHCrossRefGoogle Scholar
  43. [42]
    I. D. Ivanovic, ”How to differentiate between non-orthogonal states,” Physics Letters A, vol. 123, pp. 257–259, 1987.MathSciNetCrossRefGoogle Scholar
  44. [43]
    A. S. Kholevo, ”Bounds for the quantity of information transmitted by a quantum communication channel,” Problemy Peredachi Informatsii, vol. 9(3), 1973. English version: Problems of Information Transmission, vol. 9(3), pp. 177.MathSciNetGoogle Scholar
  45. [44]
    A. S. Kholevo, ”On asymptotically optimal hypothesis testing in quantum statistics,” Teoriia Veroiatnostei I Ee Primeneniia, vol. 23, pp. 429–433, 1978.MathSciNetMATHGoogle Scholar
  46. [44]
    A. S. Kholevo, English version: Theory of Probability and its Applications, vol. 23, pp. 411–415.Google Scholar
  47. [45]
    A. S. Kholevo, ”Capacity of a quantum communications channel,” Problemy Peredachi Informatsii, vol. 15(4), 1979. English version: Problems of Information Transmission, vol. 15(4), pp. 247.MathSciNetGoogle Scholar
  48. [46]
    K. Kraus, ”General state changes in quantum theory,” Ann. Physics, vol. 64, pp. 311–335, 1971.MathSciNetMATHCrossRefGoogle Scholar
  49. [47]
    S. Lloyd, ”Capacity of the noisy quantum channel,” Physical Review A, vol. 55, pp. 1613, 1997.MathSciNetCrossRefGoogle Scholar
  50. [48]
    D. G. Luenberger, Optimization by Vector Space Methods, Wiley, 1969.MATHGoogle Scholar
  51. [49]
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.Google Scholar
  52. [50]
    J. Mizuno, M. Fujiwara, M. Akiba, T. Kawanishi, S. M. Barnett, and M. Sasaki, ”Optimum detection for extracting maximum information from symmetric qubit sets,” Physical Review A, vol. 65, pp. 12315, 2001.CrossRefGoogle Scholar
  53. [51]
    L. Nelson and H. V. Poor, ”Performance of multiuser detection for optical CDMA—Part I: error probabilities,” IEEE Trans. Communications, vol. 43, pp. 2803, 1995.MATHCrossRefGoogle Scholar
  54. [52]
    R. Omnes, The Interpretation of Quantum Mechanics, Princeton University Press, Princeton, NJ, 1994.MATHGoogle Scholar
  55. [53]
    M. Osaki, M. Ban, and O. Hirota, ”On maximum mutual information without coding,” In P. Kumar, G. M. D’Ariano, and O. Hirota, editors, Quantum communication, computing and measurement 2. Kluwer, 1998.Google Scholar
  56. [54]
    A. Peres, ”Neumark’s theorem and quantum inseparability,” Foundations of Physics, vol. 20, pp. 1441–1453, 1990.MathSciNetCrossRefGoogle Scholar
  57. [55]
    A. Peres, Quantum Theory : Concepts and Methods, Kluwer Academic, Dordrecht, 1993.MATHGoogle Scholar
  58. [56]
    A. Peres and W. K. Wootters, ”Optimal detection of quantum information,” Physical Review Letters, vol. 66, pp. 1119–1122, 1991.CrossRefGoogle Scholar
  59. [57]
    H. V. Poor, An Introduction to Signal Detection and Estimation, Springer, New York, 2nd edition, 1994.MATHCrossRefGoogle Scholar
  60. [58]
    J. Proakis, Digital Communications, McGraw-Hill, New York, 4th edition, 2000.Google Scholar
  61. [59]
    M. Sasaki, S. M. Barnett, R. Jozsa, M. Osaki, and O. Hirota, ”Accessible information and optimal strategies for real symmetrical quantum sources,” Physical Review A, vol. 59, pp. 3325, 1999.CrossRefGoogle Scholar
  62. [60]
    B. Schumacher, ”Sending entanglement through noisy quantum channels,” Physical Re- view A, vol. 54, pp. 2614, 1996.CrossRefGoogle Scholar
  63. [61]
    B. Schumacher and M. D. Westmoreland, ”Sending classical information via noisy quantum channels,” Physical Review A, vol. 56, pp. 131, 1997.CrossRefGoogle Scholar
  64. [62]
    P. W. Shor, ”Scheme for reducing decoherence in quantum computer memory,” Physical Review A, vol. 52, pp. 2493, 1995.CrossRefGoogle Scholar
  65. [63]
    P. W. Shor, ”Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal of Computing, vol. 26, pp. 1484–1509, 1997.MathSciNetMATHCrossRefGoogle Scholar
  66. [64]
    R. L. Stratonovich, ”An approximate method for the derivation of optimum resolution of quantum signals in the presence of small interference,” Radiotekhnika i Elektronika, 21(4), 1976. English version: Radio Engineering and Electronic Physics, vol. 21(4), pp. 61–67.Google Scholar
  67. [65]
    R. L. Stratonovich, ”Optimum resolution of non-orthogonal quantum signals in the presence of small Gaussian interference,” Radiotekhnika i Elektronika, 21(3), 1976. English version: Radio Engineering and Electronic Physics, vol. 21(3), p. 71–77.MathSciNetGoogle Scholar
  68. [66]
    Y. Sun, M. Hillery, and J. A. Bergou, ”Optimum unambiguous discrimination between linearly independent nonorthogonal quantum states and its optical realization,” Physical Review A, vol. 64, pp. 22311, 2001.CrossRefGoogle Scholar
  69. [67]
    A. G. Vantsyan and R. L. Stratonovich, ”Methods of distinguishing close quantum signals,” Radiotekhnika i Elektronika, 21(1), 1976. English version: Radio Engineering and Electronic Physics, vol. 21(1), pp. 86.Google Scholar
  70. [68]
    S. Verdu, Multiuser Detection, Cambdrige University Press, Cambridge, 1998.MATHGoogle Scholar
  71. [69]
    A. Winter, Quantum multiple access channel, 1998. (e-print quantph/9807019).Google Scholar
  72. [70]
    W. K. Wootters and W. K. Zurek, Nature, vol. 299, pp. 802, 1982.CrossRefGoogle Scholar
  73. [71]
    A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, New York, 5th edition, 1997.Google Scholar
  74. [72]
    H. P. Yuen, R. S. Kennedy, and M. Lax, ”Optimum testing of multiple hypotheses in quantum detection theory,” IEEE Trans. Inform. Theory, vol. 21, pp. 125, 1975.MathSciNetMATHCrossRefGoogle Scholar
  75. [73]
    H. P. Yuen and J. H. Shapiro, ”Optical communication with twophoton coherent states— Part III: Quantum measurements realizable with photoemissive detectors,” IEEE Trans. Inform. Theory, vol. 26, pp. 78, 1980.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Julio I. Concha
    • 1
  • H. Vincent Poor
    • 1
  1. 1.Deparment of Electrical EngineeringPrinceton UniversityUSA

Personalised recommendations