Interferometric Flow Measurement

  • James D. Trolinger


For over a century, fluid properties have been determined by measuring changes in light propagated through them.1–9 The refractive index of fluids changes with temperature, species concentration, and pressure, and so deflections or deformations of optical wavefronts traveling through a fluid can be measured to infer the fluid property of interest. In contrast with optical methods, which do not interfere with flowing gases or liquids, mechanical probes sample the flow with thermocouples or pressure transducers, to determine the fluid properties. These inherently intrusive techniques alter the flow to be measured and only provide coarse spatial resolution regarding the flow.


Reference Wave Holographic Interferometry Boundary Layer Transition Optical Pathlength Optical Metrology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.S. Settles, “Schlieren and Shadowgraph Techniques, ” Springer-Verlag, Berlin, Heidelberg, New York, (2001).MATHCrossRefGoogle Scholar
  2. 2.
    P.S. Greenberg et al, “Quantitative rainbow schlieren deflectometry, ” App. OptVol. 34, 3810–3821 (July 1995).ADSCrossRefGoogle Scholar
  3. 3.
    C. Anderson and J.D. Trolinger, “New Developments in Digital Electronic Flow Diagnostics Methods,” SPIE Proceedings, International Conference, San Diego, CA (July 2001).Google Scholar
  4. 4.
    W.J. Yanta, et al, “Near and Far Field Measurements of Aero-Optical effects due to Propagation Trough Hypersonic Flows, ” AIAA-2000–2357 (2000).Google Scholar
  5. 5.
    CM. Vest, Holographic Interferometry, John Wiley and Sons, New York, pp. 387–396 (1979).Google Scholar
  6. 6.
    J.D. Trolinger, “Laser Instrumentation for Flow Diagnostics, ” AGARDograph 88–286 A NATO publication (October 1988).Google Scholar
  7. 7.
    J.D. Trolinger, “Application of Generalized Phase Control during Reconstruction to Flow Visualization Holography, ” Applied Optics, 18(6), 15 (March 1979).CrossRefGoogle Scholar
  8. 8.
    W. Merzkirch, Flow Visualization, Academic Press (1987).MATHGoogle Scholar
  9. 9.
    T. Kreis, Holographic Interferometry, Akademie Verlag (1996).Google Scholar
  10. 10.
    J. Schmitt, Optical coherence tomography; a review, IEEE J. Selected Topics in Quantum Electronics, vol. 5, no. 4, pp 1205–1215, July/August, (1999).CrossRefGoogle Scholar
  11. 11.
    W. Osten, Digitale Verarbeitung und Auswertung von Interferenzbildern, Academie Verlag, Berlin (1991).Google Scholar
  12. 12.
    P. Smigielski, Holographie Industrielle, Technia, Toulouse (1994).Google Scholar
  13. 13.
    CM. Vest, Holographie Interferometry, John Wiley & Sons, New York (1979).Google Scholar
  14. 14.
    R.E. Brooks, L.O. Heflinger, and R.F. Wuerker, “Interferometry with a Holographically Reconstructed Comparison Beam, ” Appl Phys. Letters, 7, pp. 248 (1965).ADSCrossRefGoogle Scholar
  15. 15.
    K. Takayama, “Application of holographic interferometry to shock wave research ”, Proc. of SPIE, Vol. 398, 174,(1983).CrossRefGoogle Scholar
  16. 16.
    S.C. Cha and H. Sun, “Tomography for Reconstruction Continuous Fields From 111 Posed Multi-directional Interferometry Data ”, Applied Optics, 29(2), pp. 251–258 (Jan 1990).ADSCrossRefGoogle Scholar
  17. 17.
    B. Timmerman, “Holographic Interferometric Tomography for Unsteady Compressible Flows”, Ph.D. Thesis, Technical University of Delft (1997).Google Scholar
  18. 18.
    R. Snyder, and L. Hesselink, “Measurement of Mixing Fluid Flows with Optical Tomography,” Optics Letters, Vol. 13(2) (1988).Google Scholar
  19. 19.
    K.G. Guilbert and L.J. Otten, “Aero-Optical Phenomena, ” Progress in Astronautics and aeronautics Vol. 80, AIWA, New York (1982).CrossRefGoogle Scholar
  20. 20.
    J.D. Trolinger, CF. Hess, B. Yip, B. Battles, and R. Hanson, “Hydroxyl Density Measurements with Resonant Holographic Interferometry, ” AIAA-92–0582, presented at 30th Aerospace Sciences Meeting & Exhibit, Reno, NV (January 6–9, 1992).Google Scholar
  21. 21.
    J.M. Scrota and W.H. Christiansen, “Flow Diagnostics by Resonant Holographic Interferometry, ” presented at the AIWA 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference, Seattle, WAY (1990).Google Scholar
  22. 22.
    G.V. Dreiden, A.N. Zaidel, G.V. Ostrovskaya, Y.I. Ostrivskii, N.A. Pobedonostseva, L.V. Tanin, V.N. Filippov and E.N. Shedova, “Plasma Diagnostics by Resonant Interferometry and Holography, ”Sov. J. Plasma Phys., 1, 256 (1975).Google Scholar
  23. 23.
    C. Anderson, P. Sforza and J. Martel, “Transient Whole Field Flow Diagnostics,” ASME International Mechanical Engineering Congress and Exposition, New York, (November 2002).Google Scholar
  24. 24.
    J.E. Grievenkamp and J.H. Bruning, Phase Shifting Interferometry, Wiley Interscience Optical Shop Testing, edited by Daniel Malacara 501, (1992).Google Scholar
  25. 25.
    J.D. Trolinger and N.J. Brock “Sandwich Double-Reference-Wave, Holographic, Phase Shift Interferometry,” Applied Optics, 34(28), 6354–6360 (October 1995).ADSCrossRefGoogle Scholar
  26. 26.
    R. Smythe and A.J. Moore, “Instantaneous phase-measuring interferometry, ” Optical Engineering, 23(4), 361–364, (July/August 1984).CrossRefGoogle Scholar
  27. 27.
    CS. Vikram, W.K. Witherow and J.D. Trolinger, “Algorithm for Phase-Difference Measurement in Phase-Shifting Interferometry, ” Applied Optics32(31) pp. 6250–6252 (1 November 1993).ADSCrossRefGoogle Scholar
  28. 28.
    N.J. Brock, J.E. Millerd and J.D. Trolinger, “A Simple Real-Time Interferometer for Quantitative Flow Visualization ”, AIAA Paper No. 99–0770, 37th Aerospace Sciences Meeting, Reno, NV (January 1999).Google Scholar
  29. 29.
    A. Lai, J. Abbiss, E. Scott, R. Nichols, M. Dang, M. Stone, J. Millerd, N. Brock, and T. Tibbals “Development of a Novel Optical Instrument for Turbine Blade Vibration Analysis, ” 48th Annual Instrument Society of America National Symposium (June 2002).Google Scholar
  30. 30.
    D.J. Bone, H.A. Bachor, R.J. Sandeman, “Fringe pattern analysis using a 2-D Fourier transform ,” App. Opt. Vol. 25, 3627 (1986).CrossRefGoogle Scholar
  31. 31.
    H. Babinsky and K. Takayama, “Quantitative holographic interferometry of shock wave flows using Fourier transform fringe analysis ,” Proc. 20th Int. Sym. Shock Waves, Pasadena,, World Scientific Press, Jul (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • James D. Trolinger
    • 1
  1. 1.MetroLaser, Inc.USA

Personalised recommendations