A Geometric Approach to Correlated Systems

  • Jamal Berakdar
Chapter

Abstract

Over the past few decades there has been an impressive and a steady progress in computational material science [1, 2, 3]. This development is fueled by the ever growing computational resources and by the demand for yet more precise information on technologically relevant material properties, such as the optical, transport and magnetic characteristics. A microscopic description of these properties entails the knowledge of the quantum spectrum of the system under study. Thus for real materials one has to deal with the notoriously difficult many-body problem in a computationally acceptable manner. For this purpose remarkably successful and efficient conceptual schemes have been developed where the multi-particle system is mapped onto a one body problem for a particle moving in an effective (non local) field created by all the other constituents of the system [1, 2, 4]. Usually, this effective field is further simplified according to certain recipes such as the local density approximation within the density functional theory [5]. These computationally manageable concepts have rendered possible the routine and accurate calculation of a wealth of static material properties, such as the ground state energies. On the other hand, however, it has been observed that the ground-state of certain compounds, e.g. transition metal oxides, is not described adequately within a single particle picture [2]. In addition, for the theoretical description of the excitation spectrum [6] and for the treatment of dynamical processes, such as many particle reactive scattering, methods have to be envisaged that go beyond the effective single particle model.

Keywords

Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Gonis Theoretical materials science: tracing the electronic origins of materials behavior, (Warrendale, Pa: Materials Research Society, 2000 )Google Scholar
  2. [2]
    I. Turek, V. Drchal, J. Kudrnovskÿ, M. Sob, and P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces, and Interfaces, (Kluwer Academic Pub., Boston, London, Dordrecht, 1997 )Google Scholar
  3. [3]
    K. Ohno, K. Esfarjani, and Y. Kawazoe, Computational Material Science, ( Springer, Berlin, 1999 )CrossRefGoogle Scholar
  4. [4]
    P. Fulde, Electron Correlation in Molecules and Solids, Springer Series in Solid-State Sciences, Vol. 100, ( Springer Verlag, Berlin, Heidelberg, New York, 1991 )Google Scholar
  5. [5]
    R. M. Dreizier and E. K. U. Gross Density Functional Theory (Springer Verlag, Berlin, Heidelberg, New York, 1990 )Google Scholar
  6. [6]
    L. Hedin, J. Phys. C 11 R489 R528 (1999)ADSGoogle Scholar
  7. [7]
    O. Schwartzkopf, B. Krässig, J. Elmiger, and V. Schmidt Phys. Rev. Lett 70, 3008 (1993)ADSCrossRefGoogle Scholar
  8. [8]
    R. Herrmann, S. N. Samarin, H. Schwabe, and J. Kirschner, Phys. Rev. Lett. 81, 2148 (1998)ADSCrossRefGoogle Scholar
  9. [9]
    R. Wehlitz et al Phys. Rev. Lett. 81, 1813 (1998)ADSCrossRefGoogle Scholar
  10. [10]
    I. Taouil, A. Lahmam-Bennani, A. Duguet, L. Avaldi Phys. Rev.Lett. 81, 4600 (1998)ADSCrossRefGoogle Scholar
  11. [11]
    A. Dorn et al Phys. Rev. Lett. 82, 2496 (1999)Google Scholar
  12. [12]
    M. Unverzagt et al Phys. Rev. Lett. 76, 1043 (1996)ADSCrossRefGoogle Scholar
  13. [13]
    B. El-Marji, J. P. Doering, J. H. Moore, M. A. Coplan Phys. Rev. Lett. 83, 1574 (1999)ADSCrossRefGoogle Scholar
  14. [14]
    R. Moshammer et al Phys. Rev. Lett. 84, 447 (2000)ADSCrossRefGoogle Scholar
  15. [15]
    A. Lahmam-Bennani et al Phys. Rev. A 59, 3548 (1999)ADSCrossRefGoogle Scholar
  16. [16]
    A. Dorn et al Phys. Rev. Lett. 86, 3755 (1999)ADSCrossRefGoogle Scholar
  17. [17]
    B. A. Lippmann, Phys. Rev. 102, 264 (1956)ADSMATHCrossRefGoogle Scholar
  18. [18]
    L.L. Foldy and W. Tobocman, Phys. Rev. 105, 1099 (1957)ADSMATHCrossRefGoogle Scholar
  19. [19]
    L.D. Faddeev, Soviet Phys. JETP 12, 1014 (1961)MathSciNetGoogle Scholar
  20. [20]
    L.D. Faddeev Mathematical Aspects of the Three-Body Problem ( Davey, New York, 1965 )Google Scholar
  21. [21]
    A. M. Mukhamedzhanov, E. O. Alt, G. W. Avakov, Phys. Rev. C 61, 064006 (2000)ADSCrossRefGoogle Scholar
  22. [22]
    O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967)Google Scholar
  23. [23]
    S.P. Merkuriev and L.D. Faddeev Quantum Scattering Theory for Systems of few Particles ( Nauka, Moscow, 1985 )Google Scholar
  24. [24]
    J. Berakdar, Phys. Lett. A 277, 35 (2000)ADSCrossRefGoogle Scholar
  25. [25]
    A. Kheifets et al J.Phys.B 32, 5047 (1999)Google Scholar
  26. [26]
    J. Berakdar, Phys. Rev. Lett. 85, 4036 (2000)ADSCrossRefGoogle Scholar
  27. [27]
    N. Fominykh, J. Henk, J. Berakdar, P. Bruno, H. Gollisch, R. Feder, Solid State Commun. 113, 665 (2000)ADSCrossRefGoogle Scholar
  28. [28]
    J. Berakdar, Phys. Rev. B. 58, 9808 (1998)ADSCrossRefGoogle Scholar
  29. [29]
    E. K. U. Gross, E. Runge, Vielteilchentheorie ( Teubner, Stuttgart, 1986 )Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jamal Berakdar
    • 1
  1. 1.Max-Planck-Institut für MikrostrukturphysikHalleGermany

Personalised recommendations