Advertisement

Ensemble Hartree-Fock and Kohn-Sham Schemes for Excited States

The optimised effective potential method
  • N. I. Gidopoulos
  • P. Papaconstantinou
  • E. K. U. Gross
Chapter

Abstract

Ground state Hartree Fock (HF) theory not only has proven a valuable tool to calculate the ground state properties of electronic systems, but has also served as a starting point for more sophisticated approaches which deal with correlation, like configuration interaction methods and density functional theory (DFT). Ground state HF theory is based on the Rayleigh-Ritz variational principle, which states that, the expectation value of the Hamiltonian of the N-electron system (atomic units)
$$H = \sum\limits_i {[ - \frac{\nabla }{2} + {U_{ext}}(r) + \frac{1}{2}\sum\limits_{j \ne i} {\frac{1}{{{r_{ij}}}}} ]}$$

Keywords

Density Functional Theory Ground State Property Slater Determinant Configuration Interaction Method Optimise Effective Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.J. Silverstone and M.L. Yin, J. Chem. Phys. 49, 2026 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    W.J. Hunt and W.A. Goddard III, Chem. Phys. Lett. 6, 414 (1969).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    S. Huzinaga and C. Arnau Phys. Rev. A 1, 1285 (1970).CrossRefGoogle Scholar
  4. 4.
    A.K. Theophilou, J. Phys. C, 12, 5419 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    E.K.U. Gross, L.N. Oliveira and W. Kohn, Phys. Rev. A 37, 2805 (1988).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E.K.U. Gross, L.N. Oliveira and W. Kohn, Phys. Rev. A 37, 2809 (1988).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    L.N. Oliveira, E.K.U. Gross and W. Kohn, Phys. Rev. A 37, 2821 (1988).Google Scholar
  8. 8.
    A.K. Theophilou, Recent Developments in Condensed Matter Physics, Vol.2, edited by J.T. DeVreese, L.F. Lemmens, V.E. Doren and J. Van Royen, Plenum, New York, p.125 (1981).Google Scholar
  9. 9.
    N. Gidopoulos and A.Theophilou, Phil. Mag. B 69, 1067 (1994).Google Scholar
  10. 10.
    R.T. Sharp and G.K. Horton, Phys. Rev. 90, 317 (1953).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36 (1976).ADSCrossRefGoogle Scholar
  12. 12.
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Rev. A 45, 101 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Rev. A 46, 5453 (1992).ADSCrossRefGoogle Scholar
  14. 14.
    J.B. Krieger, Y. Li and G.J. Iafrate, Phys. Rev. A 47, 165 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    J.B. Krieger, Y. Li and G.J. Iafrate, in Density Functional Theory, edited by R.M. Dreizier and E.K.U. Gross, Plenum Press, New York, p. 191, (1995).Google Scholar
  16. 16.
    A.K. Theophilou and P.G. Papaconstantinou, Phys. Rev. A 61, 22502 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    National Institute of Standards and Technology, U.S. Department of Commerce (1995).Google Scholar
  18. 18.
    N.I. Gidopoulos, P.G. Papaconstantinou and E.K.U. Gross, submitted to Phys. Rev. Lett. (2001).Google Scholar
  19. 19.
    A. Nagy, J. Phys. B: At. Mol. Opt. Phys. 34, 2363, (2001).ADSCrossRefGoogle Scholar
  20. 20.
    R. Colle and D. Salvetti, Theoret. Chim. Acta 37, 329 (1975).CrossRefGoogle Scholar
  21. 21.
    R. Colle and D. Salvetti, Theoret. Chim. Acta, 53, 55 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • N. I. Gidopoulos
    • 1
  • P. Papaconstantinou
    • 2
  • E. K. U. Gross
    • 3
  1. 1.Isis facility, Rutherford Appleton LaboratoryChilton, Didcot, OxfordshireUK
  2. 2.Institute of Materials ScienceNCSR DemokritosAg. ParaskeviGreece
  3. 3.Institut für Theoret. PhysikUniversität WürzburgAm Hubland, WürzburgGermany

Personalised recommendations