Advertisement

Can Density Functional Theory Describe Strongly Correlated Electronic Systems?

  • John P. Perdew
Chapter

Abstract

Summarized here are the ideas of Kohn-Sham spin density functional theory for the many-electron ground state, the effects of exchange and correlation, and the limits of weak and strong correlation. In particular, the suppression of electron number fluctuations in one-electron regions due to correlation is discussed. While the standard local spin density and generalized gradient approximations (GGA’s) for the exchange-correlation energy can work for certain cases of strong correlation, they fail dramatically for others. It is suggested that the new self-correlation-free meta-GGA’s and self-interaction-free hyper-GGA’s might yield a more reliable description of strong correlation.

Keywords

Spin Density Generalize Gradient Approximation Coulomb Repulsion Pair Density Generalize Gradient Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).ADSCrossRefGoogle Scholar
  3. [3]
    D.R. Hartree, Proc. Camb. Phil. Soc. 24, 89, 111, 426 (1928).Google Scholar
  4. [4]
    D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).ADSCrossRefGoogle Scholar
  5. [5]
    Gunnarsson and B.I. Lundqvist, Phys. Rev. B13, 4274 (1976).ADSGoogle Scholar
  6. [6]
    H.T. Tran and J.P. Perdew, unpublished.Google Scholar
  7. [7]
    M. Levy and J.P. Perdew, Phys. Rev. A32, 2010 (1985).Google Scholar
  8. [8]
    T. Ziegler, A. Rauk, and E.J. Baerends, Theoret. Chim. Acta 43, 261 (1977).CrossRefGoogle Scholar
  9. [9]
    V.A. Rassolov, J.A. Pople, and M.A. Ratner, Phys. Rev. B62, 2232 (2000).ADSGoogle Scholar
  10. [10]
    D. Pines and P. Nozieres, The Theory of Quantum Liquids ( Benjamin, NY, 1966 ).Google Scholar
  11. [11]
    M. Levy and J.P. Perdew, Phys. Rev. B48, 11638 (1993).Google Scholar
  12. [12]
    M. Seidl, J.P. Perdew, and M. Levy, Phys. Rev. A59, 51 (1999).ADSCrossRefGoogle Scholar
  13. [13]
    J.P. Perdew, in Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia ( Plenum, NY, 1985 ).Google Scholar
  14. [14]
    P. Ziesche, J. Tao, M. Seidl, and J.P. Perdew, Int. J. Quantum Chem. 77, 819 (2000).CrossRefGoogle Scholar
  15. [15]
    P. Dufek, P. Blaha, V. Sliwko, and K. Schwarz, Phys. Rev. B49, 10170 (1994).Google Scholar
  16. [16]
    A. Svane and 0. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).ADSCrossRefGoogle Scholar
  17. [17]
    A. Svane, Phys. Rev. Lett. 68, 1900 (1992).CrossRefGoogle Scholar
  18. [18]
    A. Svane, Phys. Rev. Lett. 72, 1248 (1994).CrossRefGoogle Scholar
  19. [19]
    Z. Szotek, W.M. Temmerman, and H. Winter, Phys. Rev. B47, 4029 (1993).ADSGoogle Scholar
  20. [20]
    P. Strange, A. Svane, W.M. Temmerman, Z. Szotek, and H. Winter, Nature 399, 756 (1999)ADSCrossRefGoogle Scholar
  21. [21]
    W.M. Temmerman, H. Winter, Z. Szotek, and A. Svane, Phys. Rev. Lett. 86, 2435 (2001).ADSCrossRefGoogle Scholar
  22. [22]
    J.-T. Hoeft, M. Kittel, M. Polcik, S. Bao, R.L. Toomes, J.-H. Kang, D.P. Woodruff, M. Pascal, and C.L.A. Lamont, Phys. Rev. Lett. 87, 86101 (2001).Google Scholar
  23. [23]
    V.I. Anisimov, F. Aryasetiawan, and A.I. Lichtenstein, J. Phys.: Con-dens. Matter 9, 767 (1997).ADSCrossRefGoogle Scholar
  24. [24]
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B48, 16929 (1993).Google Scholar
  25. [25]
    A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    J.P. Perdew and K. Schmidt, in Density Functional Theory and Its Application to Materials, edited by V. E. Van Doren, K. Van Alsenoy, and P. Geerlings (American Institute of Physics, 2001 ).Google Scholar
  27. [27]
    U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972).ADSCrossRefGoogle Scholar
  28. [28]
    J.P. Perdew and Y. Wang, Phys. Rev. B45, 13244 (1992).Google Scholar
  29. [29]
    K. Burke, J.P. Perdew, and M. Ernzerhof, J. Chem. Phys. 109, 3760 (1998).ADSCrossRefGoogle Scholar
  30. [30]
    J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048 (1981).ADSGoogle Scholar
  31. [31]
    D.C. Langreth and M.J. Mehl, Phys. Rev B28, 1809 (1983).MathSciNetADSGoogle Scholar
  32. [32]
    J.P. Perdew and Y. Wang, Phys. Rev. B33, 8800 (1986).ADSGoogle Scholar
  33. [33]
    A.D. Becke, Phys. Rev. A38, 3098 (1988).ADSCrossRefGoogle Scholar
  34. [34]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  35. [35]
    J.P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B54, 16533 (1996).Google Scholar
  36. [36]
    S. Kurth, J.P. Perdew, and P. Blaha, Int. J. Quantum Chem. 75, 889 (1999).CrossRefGoogle Scholar
  37. [37]
    R. Colle and O. Salvetti, Theoret. Chim. Acta 37, 329 (1975).CrossRefGoogle Scholar
  38. [38]
    J.P. Perdew, Phys. Rev. Lett. 55, 1665 (1985).CrossRefGoogle Scholar
  39. [39]
    A.D. Becke and M.R. Roussel, Phys. Rev. A 39, 3761 (1989).ADSCrossRefGoogle Scholar
  40. [40]
    E.I. Proynov, S. Sirois, and D.R. Salahub, Int. J. Quantum Chem. 64, 427 (1998).CrossRefGoogle Scholar
  41. [41]
    T. Van Voorhis and G.E. Scuseria, J. Chem. Phys. 109, 400 (1998).ADSCrossRefGoogle Scholar
  42. [42]
    A.D. Becke, J. Chem. Phys. 109, 2092 (1998).ADSCrossRefGoogle Scholar
  43. [43]
    J.P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999).ADSCrossRefGoogle Scholar
  44. [44]
    A. Goerling and M. Levy, Phys. Rev. B47, 13105 (1993)Google Scholar
  45. A. Goerling and M. Levy, Phys. Rev. A52, 4493 (1995).ADSCrossRefGoogle Scholar
  46. [45]
    M. Seidl, J.P. Perdew, and S. Kurth, Phys. Rev. A62, 12502 (2000).ADSCrossRefGoogle Scholar
  47. [46]
    J.P. Perdew, A. Savin, and K. Burke, Phys. Rev. A51, 4531 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • John P. Perdew
    • 1
  1. 1.Department of Physics and Quantum Theory GroupTulane UniversityNew OrleansUSA

Personalised recommendations