Advertisement

Electron Correlation from Molecules to Materials

  • Rodney J. Bartlett
Chapter

Abstract

In the treatment of electron correlation, ab initio quantum chemical methods occupy a central role. However, when compared with the approaches used in some areas of physics, particularly with reference to strong correlation, there seems to be important differences. In this chapter, I plan to discuss the different philosophy, access where some limitations are, and suggest some ways to overcome these limitations to the mutual benefit of all aspects of electronic structure theory.

Keywords

Electron Correlation Neon Atom Electronic Structure Theory Optimize Effective Potential Cusp Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Čížek, Adv. Chem. Phys. 14, 35 (1969).CrossRefGoogle Scholar
  2. [2]
    J. Paldus, J. Cízek and I. Shavitt, Phys. Rev. A 5, 50 (1972).ADSCrossRefGoogle Scholar
  3. [3]
    R.J. Bartlett, J. Phys. Chem. 93, 1697 (1989).CrossRefGoogle Scholar
  4. [4]
    R.J. Bartlett, Coupled-cluster theory: An overview of recent developments, in Modern Electronic Structure Theory, Part I, edited by D. R. Yarkony. World Scientific Publishing Co., Singapore, (1995).Google Scholar
  5. [5]
    T.H. Dunning Jr., J. Phys. Chem. A 104, 9062 (2000).CrossRefGoogle Scholar
  6. [6]
    K.L. Bak, J. Gauss, P. Jorgensen, J. Olsen, T. Helgaker and J.F. Stanton, J. Chem. Phys. 114, 6548 (2001).ADSCrossRefGoogle Scholar
  7. [7]
    M. Schutz and H.J. Werner, J. Chem. Phys. 114, 661 (2001).ADSCrossRefGoogle Scholar
  8. [8]
    G.E. Scuseria and P.Y. Ayala, J. Chem. Phys. 111, 8330 (1999).ADSCrossRefGoogle Scholar
  9. [9]
    C.W. Bauschlicher Jr. and P.R. Taylor, J. Chem. Phys. 85, 2779 (1986).ADSCrossRefGoogle Scholar
  10. [10]
    H. Larsen, J. Olsen, P. Jorgensen and O. Christiansen, J. Chem. Phys. 113, 6677 (2000).ADSCrossRefGoogle Scholar
  11. [11]
    S. Hirata, I. Grabowski, M. Tobita and R.J. Bartlett, Chem. Phys. Lett. 345, 475 (2001).ADSCrossRefGoogle Scholar
  12. [12]
    S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. 108, 5243 (1998).ADSCrossRefGoogle Scholar
  13. [13]
    S. Kucharski and R.J. Bartlett, J. Chem. Phys. 108, 9221 (1998).ADSCrossRefGoogle Scholar
  14. [14]
    M. Musial, S.A. Kucharski and R.J. Bartlett, J. Mol. Struct. (Theochem) 547, 269 (2001).CrossRefGoogle Scholar
  15. [15]
    M. Musial, S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. (in press).Google Scholar
  16. [16]
    K.P. Huber and G. Herzberg, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69,edited by W. Mallard and P.Linstrom (National Institue of Standards and Technology, Gaithersburg, MD, 1998), http://webbook.nist.gov.Google Scholar
  17. [17]
    M. Douay, R. Nietmann and P.F. Bernath, J. Mol Spectrosc. 131, 250 (1988).ADSCrossRefGoogle Scholar
  18. [18]
    S.A. Kucharski, M. Wloch, M. Musial and R.J. Bartlett, J. Chem. Phys. 115, 8263 (2001).ADSCrossRefGoogle Scholar
  19. [19]
    E.A. Salter, G.W. Trucks and R.J. Bartlett, J. Chem. Phys. 90, 1752 (1989).ADSCrossRefGoogle Scholar
  20. [20]
    J.F. Stanton and J. Gauss, J. Chem. Phys. 100, 4695 (1994).ADSCrossRefGoogle Scholar
  21. [21]
    J.A. Pople and J.S. Binkley, Mol. Phys. 29, 599 (1975).ADSCrossRefGoogle Scholar
  22. [22]
    J. Noga, P. Valiron and W. Klopper, J. Chem. Phys. 115, 2022 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    J. Noga, P. Valiron and W. Klopper, J. Chem. Phys. 115, 5690 (2001).ADSCrossRefGoogle Scholar
  24. [24]
    K. Burke, J.P. Perdew and M. Ernzerhof, J. Chem. Phys. 109, 3760 (1998).ADSCrossRefGoogle Scholar
  25. [25]
    T. Henderson and R.J. Bartlett, (to be published).Google Scholar
  26. [26]
    M. Seidl, J.P. Perdew and S. Kurth, Phys. Rev. A 62, 2502 (2000).ADSCrossRefGoogle Scholar
  27. [27]
    R.J. Bartlett and J.F. Stanton, in Reviews in Computational Chemistry, edited by K.B. Lipkowitz and D.B. Boyd, page 65 ( VCH Publishers, New York, 1994 ).CrossRefGoogle Scholar
  28. [28]
    P. Piecuch, S.A. Kucharski and R.J. Bartlett, J. Chem. Phys. 110, 6103 (1999).ADSCrossRefGoogle Scholar
  29. [29]
    R.J. Bartlett, in Chemistry for the 21 8 t Century, edited by E. Keinan and I. Schechter, page 271 ( Wiley-VCH, Weinheim, 2000 ).Google Scholar
  30. [30]
    I. Grabowski, S. Hirata, S. Ivanov and R.J. Bartlett, J. Chem. Phys. (in press).Google Scholar
  31. [31]
    S. Hirata, S. Ivanov, I. Grabowski, R.J. Bartlett, K. Burke and J.D. Tal-man, J. Chem. Phys. 115, 1635 (2001).ADSCrossRefGoogle Scholar
  32. [32]
    A.D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  33. [33]
    C. Filippi, C.J. Umrigar and X. Gonze, Phys. Rev. A 54, 4810 (1996).ADSCrossRefGoogle Scholar
  34. [34]
    Q.S. Zhao, R.C. Morrison and R.G. Parr, Phys. Rev. A 50, 2138 (1994).ADSCrossRefGoogle Scholar
  35. [35]
    C.E. Taylor, M.G. Cory and R.J. Bartlett, J. Phys. Chem. A (submitted).Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Rodney J. Bartlett
    • 1
  1. 1.Quantum Theory Project, Departments of Chemistry and PhysicsUniversity of FloridaGainesvilleUSA

Personalised recommendations