Control Graphs for Robot Networks

  • Aveek Das
  • Rafael Fierro
  • Vijay Kumar
Part of the Cooperative Systems book series (COSY, volume 1)

Abstract

In this paper we address the problem of stabilizing a group of mobile robots information. The group is required to follow a prescribed trajectory, while achieving and maintaining a desired formation. We describe algorithms for assigning control policies to different robots, based on sensor and actuator constraints. This assignment is described by a control graph. We relate the structure of the control graph to the stability of the dynamics of the formation. We examine both holonomic and nonholonomic mobile robot formations, and present analytical results and numerical simulations illustrating our approach.

Keywords

Formation control cooperative control nonholonomic mobile robots stability control graphs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Alur, A. Das, J. Esposito, R. Fierro, Y. Hur, G. Grudic, V. Kumar, I. Lee, J. P. Ostrowski, G. Pappas, J. Southall, J. Spletzer, and C. J. Taylor, “A framework and architecture for multirobot coordination”, In D. Rus and S. Singh, editors, Experimental Robotics VII, pages 303–312. Springer Verlag, 2001.CrossRefGoogle Scholar
  2. [2]
    S. Baker and S. Nayar, “A theory of catadoptric image formation”, In International Conference on Computer Vision, pages 35–42, Bombay, India, Jan. 1998.Google Scholar
  3. [3]
    W. Burgard, M. Moors, D. Fox, R. Simmons, and S. Thrun, “Collaborative multi-robot exploration”, In Proc. IEEE Int. Conf. Robot. Automat., pages 476–481, San Francisco, CA, April 2000.Google Scholar
  4. [4]
    C. Canudas-de-Wit and A. D. N. Doudi-Likoho, “Nonlinear control for a convoy-like vehicle”, Automatica, 36:457–462, 2000.MATHCrossRefGoogle Scholar
  5. [5]
    T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, The MIT Press, Cambridge, Massachusetts, 1997.Google Scholar
  6. [6]
    A. Das, R. Fierro, V. Kumar, J. Southall, J. Spletzer, and C. J. Taylor, “Real-time vision based control of a nonholonomic mobile robot”, In IEEE Int. Conf. Robot. Automat., ICRA2001, pages 157–162, Seoul, Korea, May 2001.Google Scholar
  7. [7]
    A. Das, V. Kumar, J. Spletzer, and C. J. Taylor, “Ad hoc networks for localization and control of mobile robots”, In IEEE Conf. on Decision and Control (invited paper), 2002.Google Scholar
  8. [8]
    J. Desai, J. P. Ostrowski, and V. Kumar, “Controlling formations of multiple mobile robots”, In Proc. IEEE Int. Conf. Robot. Automat., pages 2864–2869, Leuven, Belgium, May 1998.Google Scholar
  9. [9]
    M. Egerstedt and X. Hu, “Formation constrained multi-agent control”, In Proc. IEEE Int. Conf. Robot. Automat., pages 3961–3966, Seoul, Korea, May 2001.Google Scholar
  10. [10]
    J. A. Fax and R. M. Murray, “Graph laplacians and vehicle formation stabilization”, In IFAC 15th World Congress on Automatic Control, July 2002.Google Scholar
  11. [11]
    J. Feddema and D. Schoenwald, “Decentralized control of cooperative robotic vehicles”, In Proc. SPIE Vol. 4364, Aerosense, Orlando, Florida, April 2001.Google Scholar
  12. [12]
    R. Fierro, A. Das, V. Kumar, and J. P. Ostrowski, “Hybrid control of formations of robots”, Proc. IEEE Int. Conf. Robot. Automat., ICRA01, pages 157–162, May 2001.Google Scholar
  13. [13]
    F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.Google Scholar
  14. [14]
    J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search and rescue with a team of mobile robots”, Proc. IEEE Int. Conf on Advanced Robotics, 1997.Google Scholar
  15. [15]
    W. Kang, N. Xi, and A. Sparks, “Theory and applications of formation control in a perceptive referenced frame”, In Proc. IEEE Conference on Decision and Control, pages 352–357, Sydney, Australia, December 2000.Google Scholar
  16. [16]
    H. Khalil, Nonlinear Systems, Prentice Hall, Upper Sadie River, NJ, 2nd edition, 1996.Google Scholar
  17. [17]
    J. Lawton, B. Young, and R. Beard, “A decentralized approach to elementary formation maneuvers”, In Proc. IEEE Int. Conf. Robot. Automat., pages 2728–2733, San Francisco, CA, April 2000.Google Scholar
  18. [18]
    Y. Liu, K. M. Passino, and M. Polycarpou, “Stability analysis of one-dimensional asynchronous mobile swarms”, In Proc. IEEE Conference on Decision and Control, pages 1077–1082, Orlando, FL, 2001.Google Scholar
  19. [19]
    M. Mataric, M. Nilsson, and K. Simsarian, “Cooperative multi-robot box pushing”, In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 556–561, Pittsburgh, PA, Aug. 1995.Google Scholar
  20. [20]
    A. S. Morse, “Stability for switching control systems” Personal Communication, 2002.Google Scholar
  21. [21]
    D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of autonomous robots”, In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 235–242, Pittsburgh, PA, Aug. 1995.Google Scholar
  22. [22]
    D. D. Siljak, Decentralized Control of Complex Systems, Academic Press, 1991.Google Scholar
  23. [23]
    J. Spletzer, A. Das, R. Fierro, C. J. Taylor, V. Kumar, and J. P. Ostrowski, “Cooperative localization and control for multi-robot manipulation”, In IEEE/RSJ Int. Conf. Intell. Robots and Syst., IROS2001, Oct. 2001.Google Scholar
  24. [24]
    D. Stilwell and J. Bay, “Toward the development of a material transport system using swarms of ant-like robots”, In IEEE International Conf. on Robotics and Automation, pages 766–771, Atlanta, GA, May 1993.Google Scholar
  25. [25]
    T. Sugar and V. Kumar, “Control and coordination of multiple mobile robots in manipulation and material handling tasks”, In P. Corke and J. Trevelyan, editors, Experimental Robotics VI: Lecture Notes in Control and Information Sciences, volume 250, pages 15–24. Springer-Verlag, 2000.Google Scholar
  26. [26]
    D. Swaroop and J. K. Hedrick, “String stability of interconnected systems”, IEEE Trans. Automat. Contr., 41(3):349–357, March 1996.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    K. H. Tan and M. A. Lewis, “Virtual structures for high precision cooperative mobile robot control”, Autonomous Robots, 4:387–403, October 1997.CrossRefGoogle Scholar
  28. [28]
    C. J. Taylor, “Videoplus: A method for capturing the structure and appearance of immersive environment”, Second Workshop on 3D Structure from Multiple Images of Large-scale Environments, 2000.Google Scholar
  29. [29]
    P. Wang, “Navigation strategies for multiple autonomous mobile robots moving in formation”, Journal of Robotic Systems, 8(2): 177–195, 1991.MATHCrossRefGoogle Scholar
  30. [30]
    H. Yamaguchi and J. W. Burdick, “Asymptotic stabilization of multiple nonholonomic mobile robots forming groups formations”, In Proc. IEEE Int. Conf. Robot. Automat., pages 3573–3580, Leuven, Belgium, May 1998.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Aveek Das
    • 1
  • Rafael Fierro
    • 2
  • Vijay Kumar
    • 1
  1. 1.GRASP LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.School of Electrical and Computer EngineeringOklahoma State UniversityUSA

Personalised recommendations