Advertisement

Carleman Estimates for a Plate Equation on a Riemann Manifold with Energy Level Terms

  • I. Lasiecka
  • R. Triggiani
  • P. F. Yao
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 10)

Abstract

We provide Carleman estimates for an Euler-Bernoulli type plate equation with energy level terms, defined on an open bounded set Ω of a finite-dimensional Riemann manifold (M, g). The energy level for this problem is H 3(Ω) × H 1(Ω). The basic assumption made is the existence of a strictly convex function on Ω. Carleman estimates are also a critical springboard from which one may derive the a-priori inequalities of continuous observability/uniform stabilization of interest in control theory of PDEs.

Keywords

Integral Term Unique Continuation Exact Controllability Carleman Estimate Plate Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Eller, M.:A remark on a theorem by Hörmander. Proceedings of 3rd International ISAAC Congress, Berlin, August 2001. World Scientific, Singapore, to appear.Google Scholar
  2. [2]
    Eller, M., Lasiecka, I., Triggiani, R.: Simultaneous exact/approximate boundary controllability of thermo-elastic plates with variable transmission coefficients. Lecture Notes in Pure and Applied Mathematics 216, Marcel Dekker, New York, 2001, 109–230.MATHGoogle Scholar
  3. [3]
    Eller, M., Lasiecka, I., Triggiani, R.: Unique continuation for over-determined Kirchhoff plate equations and related thermo-elastic systems. J. Inv. and Ill-Posed Problems 9 (2) (2001), 103–148.MathSciNetMATHGoogle Scholar
  4. [4]
    Gulliver, R., Littman, W.: The use of geometric tools in the boundary control of partial differential equations. Proceedings of 3rd International ISAAC Congress, Berlin, August 2001. World Scientific, Singapore, to appear.Google Scholar
  5. [5]
    Greene, R.-E., Wu, H.: C∞ convex functions and manifolds of positive curvature. Acta Math. 137 (1976), 209–245.MathSciNetCrossRefGoogle Scholar
  6. [6]
    Hebey, E.: Sobolev spaces on Riemannian manifolds. Lecture Notes in Mathematics, Springer, Berlin, 1996.Google Scholar
  7. [7]
    Hörmander, L.: On the characteristic Cauchy problem. Ann. Math. (2) 88 (1968), 341–370.MATHCrossRefGoogle Scholar
  8. [8]
    Hörmander, L.: On the uniqueness of the Cauchy problem, II, Math. Scand. 7 (1959), 177–190.MathSciNetMATHGoogle Scholar
  9. [9]
    Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin etc. 1963.MATHCrossRefGoogle Scholar
  10. [10]
    Isakov, V.: On uniqueness on a lateral Cauchy problem with multiple characteristics. J. Diff. Eqns. 134 (1997), 134–147.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    Isakov, V.: Inverse problems for partial differential equations. Springer, Berlin etc. 1998.MATHGoogle Scholar
  12. [12]
    Lasiecka, I., Triggiani, R.: Exact controllability of the Euler-Bernoulli equation with Lz(E)-control only in the Dirichlet B.C. Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Nat. Vol. LXXXII, No. 1 (1988), Rome.Google Scholar
  13. [13]
    Lasiecka, I., Triggiani, R.: Exact controllability of the Euler-Bernoulli equations with controls in the Dirichlet and Neumann B.C.: A non-conservative case. SIAM J. Control Optim. 27 (1989), 330–373.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    Lasiecka, I., Triggiani, R.: Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moment. JMAA 146 (1990), 1–33.MathSciNetMATHGoogle Scholar
  15. [15]
    Lasiecka, I., Triggiani, R.: Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometric conditions. Appl. Math. Optim. 25 (1992), 189–224.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    Lasiecka, I., Triggiani, R.: A-priori observability inequalities. Chapter 1, Lecture Notes, University of Virginia, May 1995.Google Scholar
  17. [17]
    Lasiecka, I., Triggiani, R.: Carleman estimates and exact boundary controllability for a system of coupled, non-conservative second-order hyperbolic equations. Lecture Notes in Pure and Applied Mathematics 188, eds. J.P. Zolesio and G. Da Prato. Marcel Dekker, New York, 1997, 125–243.Google Scholar
  18. [18]
    Lasiecka, I., Triggiani, R., Yao, P.F.: Exact controllability for second-order hyperbolic equations with variable coefficient-principal part and first-order terms. Nonlinear Analysis: Theory, Methods, Applications 30 (1) (1997), 111–122.MathSciNetMATHGoogle Scholar
  19. [19]
    Lasiecka, I., Triggiani, R., Yao, P.F.: Inverse/observability estimates for second order hyperbolic equations with variable coefficients. JMAA 235 (1999), 13–57.MathSciNetMATHGoogle Scholar
  20. [20]
    Lions, J.L.: Controllabilite exacte, stabilization et perturbation des systemes distribues. 1, Masson, Paris, 1988.Google Scholar
  21. [21]
    Nirenberg, L.: Uniqueness in Cauchy problems for differential equations with constant leading coefficients. Comm. Pure Appl. Math. 10 (1957), 89–105.MathSciNetMATHGoogle Scholar
  22. [22]
    Shirota, T.: A remark on the unique continuation theorem for certain fourth order elliptic equations. Proc. Japan Acad. 36 (1960), 571–573.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    Tataru, D.: A-priori pseudoconvexity energy estimates in domains with boundary and applications to exact boundary controllability for conservative PDEs. Ph.D. Thesis, University of Virginia, May 1992.Google Scholar
  24. [24]
    Tataru, D.: Boundary controllability for conservative PDEs. Appl. Math. and Optimiz. 31 (1995), 257–295.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    Tataru, D.: A-priori estimates of Carleman’s type in domains with boundaries. J. Math. Pures et Appl. 73 (1994), 355–387.MathSciNetMATHGoogle Scholar
  26. [26]
    Taylor, M.: Partial Differential Equations. 1, 2, Springer, Berlin etc. 1991.Google Scholar
  27. [27]
    Triggiani, R.: Carleman estimates and exact boundary controllability for a system of coupled non-conservative Schrödinger equations. Rend. Istit. Math. Univ. Trieste (Italy), Suppl. Vol. XXVIII (1997), 453–504; volume in memory of P. Grisvard.Google Scholar
  28. [28]
    Triggiani, R., Yao, P.F.: Inverse/observability estimates for Schrödinger equations with variable coefficients. Special volume on control of PDEs. Control and Cybernetics 28 (1999), 627–664.MathSciNetMATHGoogle Scholar
  29. [29]
    Wu, H., Shen, C.L., Yu, Y.L.: An introduction to Riemann geometry. University of Beijing, 1989 (in Chinese).Google Scholar
  30. [30]
    Yao, P.F.: On the observability inequalities for the exact controllability of wave equations with variable coefficients, SIAM Control and Optimiz. 37 (5) (1999), 1568–1599.MATHCrossRefGoogle Scholar
  31. [31]
    Yao, P.F.: Observability inequalities for the Euler-Bernoulli plate with variable coefficients. Contemporary Mathematics, Amer. Math. Soc. 268 (2000), 383–406.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • I. Lasiecka
    • 1
  • R. Triggiani
    • 1
  • P. F. Yao
    • 2
  1. 1.Department of MathematicsUniversity of VirginiaCharlottesvilleUSA
  2. 2.Institute of Systems Science Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijingPRC

Personalised recommendations