Skip to main content

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 3))

Abstract

Conventional Thermal Analysis has since its introduction been used abundantly in studies of classical ceramics (clay products, porcelain, concrete) to establish the optimum process conditions for the fabrication of these materials and to measure their properties and behaviour. As a relatively new technique, however, the main applications of Sample-Controlled techniques (SCTA) has been in more fundamental studies of what generally is termed as engineering ceramics (structural and functional ceramics) and in this chapter we shall therefore focus on some recent thermogravimetric and dilatometric studies on these materials. Although many catalyst and adsorbents also can be considered as engineering ceramics, SCTA studies on these materials are however treated separately in Chapters 6 and 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Chen, O.T. Sørensen, G. Meng and D. Peng, J. Thermal Analysis 53 (1998) 397–410.

    Article  CAS  Google Scholar 

  2. M. Stockenhuber, H. Mayer and J.A. Lercher. J. Am. Ceram. Soc., 76 (1993) 1185.

    Article  CAS  Google Scholar 

  3. F.L. Chen, P. Wang, O.T. Sørensen, G.Y. Meng and D.K. Peng, J. Mater. Chem., 7 (1997) 1533.

    Article  CAS  Google Scholar 

  4. I. Aboltina, R. Ramata and I. Brante, Ferroelectrics, 141 (1993) 277.

    Article  CAS  Google Scholar 

  5. V.B. Reddy and P.N. Kaushik, Thermochim Acta, 83 (1998b) 347.

    Google Scholar 

  6. K.K. Kelly, Bur. Mines. Bull, No. 371 (1934).

    Google Scholar 

  7. K.K. Kelly and C.T. Anderson, Bur. Mines Bull No 384 (1935).

    Google Scholar 

  8. A. Finkelstein, Ber., 39(1906) 1585.

    CAS  Google Scholar 

  9. L. Hackspill and G. Wolf, Compt. Rendu, 204 (1937) 1820.

    CAS  Google Scholar 

  10. E.H. Baker, J. Chem. Soc., (1964) 699.

    Google Scholar 

  11. C.H. Bamford, C.F.H. Tipper: Reactions in the solid state. Comprehenseive Chemical Kinetics, vol. 22, Elsevier 1980.

    Google Scholar 

  12. T.P. Bagchi and P.K. Sen, Thermochim Acta., 51 (1981) 175.

    Article  CAS  Google Scholar 

  13. A.W. Coats and J.P. Redfern, Nature, 201 (1964) 68.

    Article  CAS  Google Scholar 

  14. E.S. Freeman and B. Carroll, J. Phys. Chem., 62 (1958) 394.

    Article  CAS  Google Scholar 

  15. U. Patnik and J. Muralidhar, Thermochim. Acta, 274 (1972) 31.

    Google Scholar 

  16. M.D. Judd and M.I. Pope, J. Thermal. Anal., 4 (1972) 31.

    Article  CAS  Google Scholar 

  17. T. Kudo and H. Obayashi, J. Electrochem. Soc., 122 (1975) 142–147.

    Article  CAS  Google Scholar 

  18. J.J. Bentzen, P.L. Husum and O. Toft Sørensen, in High Tech ceramics (Ed. P. Vincenzini) Elsevier Science Publishers, 1987, 385–398.

    Google Scholar 

  19. P.L. Husum and O. Toft Sørensen, Thermochim Acta, 114 (1987) 131–138.

    Article  CAS  Google Scholar 

  20. O. Toft Sørensen, J. Thermal Anal., 38 (1992) 228.

    Article  Google Scholar 

  21. M. El Sayed and O. Toft Sørensen. Initial Sintering Stage Kinetics of CeO2 studied by Stepwise Isothermal Dilatometry. Risø-R-518. February 1985. Risø National Laboratory, Denmark.

    Google Scholar 

  22. R.L. Coble, J. Am. Ceram. Soc., 41, 1958, 55–62.

    Article  CAS  Google Scholar 

  23. W.S. Coblenze et al., In “Sintering Processes, Materials Science and Research” (Ed. G.C. Kuczynski) 13, 1980.

    Google Scholar 

  24. M. El-Sayed Ali, O. Toft Sørensen and L. Hälldahl, In “Thermal Analysis, proceedings of the seventh International Conference on Thermal Analysis”. (Ed. Ed. B. Miller), Wiley, NY 1982, 344–349.

    Google Scholar 

  25. M. El-Sayed Ali, O. Toft Sørensen and L. Hälldahl, J. Therm. Anal., 25, 1982, 175–180.

    Article  CAS  Google Scholar 

  26. J.J. Bacman and C. Cizeron, J. Nucl. Mater., 33, 1969, 271–285.

    Article  Google Scholar 

  27. M. El-Sayed Ali and R. Lorenzelli, J. Nucl. Mater., 87, 1979, 90–96.

    Article  Google Scholar 

  28. H.J. Matzke, In “Nonstoichiometric Oxides” (Ed. O. Toft Sørensen), Academic Press, NY, 1980, 155–232.

    Google Scholar 

  29. P. Kofstad, In “Non-stoichiometry, Diffusion and Electrical Conductivity in Binay metal Oxides”, Wiley, NY 1973, 276–283.

    Google Scholar 

  30. M- El-Sayed Ali, S. El-Houte and O. Toft Sørensen, Interceram., 40(4), 1994, 248–250.

    Google Scholar 

  31. W.H. Rhodes, J. Am. Ceram. Soc., 64(1), 1981, 19–22.

    Article  CAS  Google Scholar 

  32. Y. Okamot, J. Leujt, Y. Yamada, K. Hayashi and T. Nishikama, In “The 3rd International Conference on the Science and Technology of Zirconia”, Extended Abstracts, Zirconia, Tokyo, 1986.

    Google Scholar 

  33. H.J. Matzke, in “Nonstoichiometric Oxides” (Ed. O. Toft Sørensen) Academic Press 1981, 155–232

    Chapter  Google Scholar 

  34. Huan-ting Wang, Xing-qin Liu, Fang-lim Chen, Guang-yao Meng and O. Toft Sørensen, J. Am. Ceram Soc. 81(3) (1998) 81–84.

    Google Scholar 

  35. S. Mkipirti, in Powder metallurgy (Ed. W Leszynski) Interscience New York 1996, 97.

    Google Scholar 

  36. H.E. Exner and G. Petzov, in Sintering Processes (Ed. G.C. Kuczynski) Plenum Press, NY 1980.

    Google Scholar 

  37. G.Y. Meng and O. Toft Sørensen, “Kinetic Analysis on Low Temperature Sintering Proicess for Y-TZP Ceramics” in Advanced Structural Materials (Ed. Y Han) Elsevier Science Publishers, Amsterdam, vol 2, 1991, 369–374.

    Google Scholar 

  38. G. Theunissen, Microstructure, Fracture Toughness and Strength of (ultra) Fine Grained Tetragonal Zirconia Ceramics, Thesis, 1991.

    Google Scholar 

  39. T. Arii, K. Terayama and N. Fujii, J. Therm. Anal., 47(1996) 1649–1661.

    Article  CAS  Google Scholar 

  40. J. Rouquerol and M. Ganteaume; J. Thermal Anal., 11 (1977) 201.

    Article  CAS  Google Scholar 

  41. J. Rouquerol, F. Rouquerol and M. Ganteaume; J. Catal. 36 (1975) 99

    Article  CAS  Google Scholar 

  42. J. Rouquerol, F. Rouquerol and M. Ganteaume, J. Catal., 57 (1979) 222.

    Article  CAS  Google Scholar 

  43. F. Rouquerol, J. Rouquerol and B. Imelik, In Principles and applications of pore structural characterization, ed. By J.M. Haynes and P. Rossi-Doria, Bristol, Arrowsmith (1985) 213.

    Google Scholar 

  44. M.H. Stacey, Anal. Proc., 22 (1985) 242.

    CAS  Google Scholar 

  45. M.H. Stacey, Langmuir, 3 (1987) 681.

    Article  CAS  Google Scholar 

  46. P.A. Barnes and G.M.B. Parkes, Preparation of Catalysts VI (Scientific Bases for the Preparation of Catalysts); (G. Pocelet et al. Eds.) Elsevier, Amsterdam (Holland) 1995.

    Google Scholar 

  47. L.A. Pérez-Maqueda, J.M. Criado, C. Real, J. Subrt and J. Bohácek, J. Mater. Chem. 9 (1999) 1839.

    Article  Google Scholar 

  48. L.A. Pérez-Maqueda, J.M. Criado, J. Subrt and C. Real, Catal. Letters, 60 (1999) 151.

    Article  Google Scholar 

  49. G.S. Chopra, C. Real, M.D. Alcalá, L.A. Pérez-Maqueda, J. Subrt and J.M. Criado, Chem. Mat., 11 (1999) 1128.

    Article  CAS  Google Scholar 

  50. J.M. Criado, F.J. Gotor, C. Real, F. Jiménez, S. Ramos and J. Del Cerro; Ferroelectrics, 115 (1991) 43.

    Article  CAS  Google Scholar 

  51. J.M. Criado, M.J. Diánez, F. Gotor, C. Real, M. Mundi, S. Ramos and J. Del Cerro, Ferroelectric Letters, 14 (1992) 79.

    Article  CAS  Google Scholar 

  52. F.J. Gotor, C. Real, M.J. Diánez and J.M. Criado, J. Solid State Chem., 123 (1996) 301.

    Article  CAS  Google Scholar 

  53. F.J. Gotor, L.A. Pérez-Maqueda and J. M. Criado, J. Eur. Ceram. Soc., 22 (2002) 2227.

    Google Scholar 

  54. L.A. Pérez-Maqueda, F. Gotor, M.J. Diánez, C. Real and J.M. Criado, In press.

    Google Scholar 

  55. K.S. Meyers, M. Seivastava and R.F. Speyer, Proc. SPIE-Int. Soc. Opt. Eng. 3330 (1998).

    Google Scholar 

  56. A.V. Ragulya, Nanostruct. Mater., 10 (1998) 349.

    Article  CAS  Google Scholar 

  57. A.V. Ragulya and A.V. Polotay, Ferroelectrics, 254, (2001) 41.

    Article  CAS  Google Scholar 

  58. A.I. Bykov, A.V. Polotay, A.V. Ragulya and V.V. Skoeokhod, Powder Metall. Met. Ceram., 39 (2001) 395.

    Google Scholar 

  59. K.S. Meyers and R.F. Speyer, Mater. Res. Soc. Symp. Proc., 547 (1999) 115

    Article  CAS  Google Scholar 

  60. G. Agarwall, R.F. Speyer and W.S. Hakenberger, J. Mater. Res., 11 (1996) 671.

    Article  Google Scholar 

  61. G. Agarwall and R.F. Speyer, Mater. Res. Soc. Symp. Proc., 431 (1996) 427.

    Article  Google Scholar 

  62. A.V. Ragulya, V.V. Skorokhod and M.G. Burenkov, Key Eng. Mater., 132–136, (1997) 674.

    Article  Google Scholar 

  63. G. Agarwall and R.F. Speyer, J. Mater. Res., 12 (1997) 2447.

    Article  Google Scholar 

  64. D. Hudda, M.A. El Baradie, M.S.J. Hashmi and R. Puyane, J. Mater. Sci., 33 (1998) 271.

    Article  Google Scholar 

  65. J. Zimmer, F. Roether, K. Jaenicke-Rossler and G. Leither, Adv. Sci. Tecnol., 14 (1999) 693.

    CAS  Google Scholar 

  66. G. Gilde, P.A. Patel and M. Patterson, Proc. SPIE-Int. Soc. Opt. Eng., 3705 (1999) 94.

    CAS  Google Scholar 

  67. K. Maca, H. Hadraba and J. Cihlar, EUROMAT 99, Biannu. Meet. Eur. Mater. Soc. (FEMS) 12 (2000) 161.

    CAS  Google Scholar 

  68. O.B. Zgalat-Lozynskyy, A.V. Ragulya and M. Herrmann, NATO Science Series, II: Mathematics, Physics and Chemistry, 16 (2001) 161.

    CAS  Google Scholar 

  69. Y. Masuda and H. Satoh, Netsu Sukutey, 28 (2001) 193.

    CAS  Google Scholar 

  70. T. R. G. Kutty, K.B. Khan, P.V. Hedge, A.K. Sengupta, S. Majumdar and D.S.C. Purushotham, J. Nucl. Mater., 297 (2001) 120.

    Article  CAS  Google Scholar 

  71. O.T. Sorensen, J. Thermal Anal., 38 (1992) 213.

    Article  Google Scholar 

  72. A. Dwivedi and R.F. Speyer, Thermochim. Acta, 247 (1994) 431.

    Article  CAS  Google Scholar 

  73. W.S. Hackenberger, T.R. Shrout and R.F. Speyer, Sintering Technol. [Conf.] 505 (1996).

    Google Scholar 

  74. T. Arii, K. Terayama and N. Fujii, J. Thermal Anal., 47 (1996) 1649.

    Article  CAS  Google Scholar 

  75. J. Witt, R.F. Speyer and L. Murali, Rev. Sci. Instrum., 68 (1997) 2546.

    Article  CAS  Google Scholar 

  76. M.Y. Nishimoto, R.F. Speyer and W.S. Hackenberger, J. Mat. Sci., 36 (2001) 2271.

    Article  CAS  Google Scholar 

  77. M.D. Alcalá, C. Real and J.M. Criado, J. Thermal Anal., 38 (1992) 313.

    Article  Google Scholar 

  78. M.D. Alcalá, J.M. Criado and C. Real, Mat. Sci. Forum,383 (2002) 25.

    Article  Google Scholar 

  79. M.D. Alcalá, J.M. Criado and C. Real, Adv. Eng. Mater., 4 (2002) 478.

    Article  Google Scholar 

  80. C. Real, M.D. Alcalá and J.M. Criado, Solid State Ionics, 95 (1997) 29.

    Article  CAS  Google Scholar 

  81. A. Feylessoufi, M. Crespin, P. Dion, F. Bergaya, H. Van Damme and P. Richard, Advanced Cement Bases Materials, 6 (1997) 21.

    CAS  Google Scholar 

  82. Y. Grillet, J.M. Cases, M. Francois, J. Rouquerol and J.E. Piorier, Clays and Clay Min., 36 (1988) 233.

    Article  CAS  Google Scholar 

  83. P.L. Llewellin, V. Chevrot, J. Regai, O. Cerclier, J. Estienne and F. Rouquerol, Solid State Ionics, 101–103 (1997) 1293.

    Article  Google Scholar 

  84. E. Diez, O. Monnereau, L. Tortet, G. Vacquier, P. L. Llewellin and F. Rouquerol, J. Optoelectr. Advan. Mater., 2 (2000) 552.

    CAS  Google Scholar 

  85. T. Arii, T. Taguchi, A. Kishi, M. Ogawad and Y. Sawada, J. Eur. Ceram. Soc. 22 (2002) 2283.

    Article  CAS  Google Scholar 

  86. S. Bordère, A. Floreancing, F. Rouquerol and J. Rouquerol, Solid State Ionics 63–65 (1993) 229.

    Article  Google Scholar 

  87. S. Bordère, F. Rouquérol, J. Rouquérol, J. Estienne and A. Floreancig; J. Therm. Anal., 36 (1990) 1651–1668.

    Article  Google Scholar 

  88. S. Bordère, F. Rouquérol, P.L. Llewellyn and J. Rouquérol, Thermochim. Acta, 282–283 (1996) 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sorensen, O.T., Criado, J.M. (2003). SCTA and Ceramics. In: Sørensen, O.T., Rouquerol, J. (eds) Sample Controlled Thermal Analysis. Hot Topics in Thermal Analysis and Calorimetry, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3735-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3735-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5249-3

  • Online ISBN: 978-1-4757-3735-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics