Advertisement

PGAs and Filters

  • Manuel Delgado-Restituto
  • Angel Rodríguez-Vázquez
Chapter

Abstract

Amplifiers and filters are commonplace devices in the analog front-end (AFE) of communication transmitters-receivers (transceivers, in short). In a general sense, these devices provide the necessary adaptation, in terms of power adjustment and signal isolation, between the transmission media (e.g., atmosphere, free space, cable, twisted-pair, optic fiber) and the digital signal processor (DSP) which performs most of the algorithmic tasks needed to guarantee a reliable transmission/reception of the information [1]. In some cases as, for instance, in wireless transceivers, amplification and filtering may take place at multiple steps along the AFE; often using different technologies (CMOS, silicon bipolar, GaAs) or external passive components (e.g., surface-acoustic wave filters) depending on the frequency range at which operations are realized [2]. In this chapter, following the main stream of the book, we focus on the realization of those amplifiers and filters which are used to drive signals to/from the AFE data converters†2 at the interface with the DSP block, paying special attention on their implementation in inexpensive CMOS technologies. Such amplifiers and filters are symbolically shown in Fig. 14.1, where preceding/following circuits for reception/transmission have been globally called Rx/Tx medium interface, respectively.

Keywords

Noise Figure Power Gain Variable Gain Amplifier Compression Point Asymmetric Digital Subscriber Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Chien, Digital Radio Systems on a Chip. A Systems Approach. Kluwer Academic Publishers, Norwell (MA), 2001.Google Scholar
  2. [2]
    A. A. Abidi, P. R. Gray and R. G. Meyer (Eds.), Integrated Circuits for Wireless Communications. IEEE Press, New York, 1999.Google Scholar
  3. [3]
    Y. P. Tsividis, and J. Voorman, Integrated Continuous-Time Filters: Principles, Design and Applications. IEEE Press, New York, 1992.Google Scholar
  4. [4]
    B. Nauta, Analog CMOS Filters for Very High Frequencies. Kluwer Academic Publishers, Boston (MA), 1992.Google Scholar
  5. [5]
    S. D. Willingham, and K. W. Martin, Integrated Video-Frequency Continuous-Time Filters. High-Performance Realizations in BiCMOS. Kluwer Academic Publishers, Boston (MA), 1995.CrossRefGoogle Scholar
  6. [6]
    S. Pavan, and Y. P. Tsividis, High Frequency Continuous Time Filters in Digital CMOS Processes. Kluwer Academic Publishers, Boston (MA), 2000.Google Scholar
  7. [7]
    A. Sedra, and P. Brackett, Filter Theory and Design: Active and Passive. Matrix Publishers, Beaverton (OR), 1968.Google Scholar
  8. [8]
    R. Schaumann, K. Laker, and M. Ghausi, Analog Filter Design — Passive, Active RC and Switched-Capacitor. Prentice Hall Publishers, Englewood-Cliffs (NJ), 1992.Google Scholar
  9. [9]
    J. C. Rudell, J.-J-Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephonne Applications,” IEEE J. of Solid-State Circuits, vol. 32, pp. 2071–2088, December 1997.CrossRefGoogle Scholar
  10. [10]
    P. J. Chang, A. Rofougaran, and A. A. Abidi, “A CMOS Channel-Select Filter for a Direct-Conversion Wireless Receiver,” IEEE J. Solid-State Circuits, vol. 32, pp. 722–729, May 1997.CrossRefGoogle Scholar
  11. [11]
    M. Gustavsson, J. J. Wikner and N. N. Tan, CMOS Data Converters for Communications. Kluwer Academic Publishers, Boston (MA), 2000.Google Scholar
  12. [12]
    P. P. Siniscalchi, J. K. Pitz, R. K. Hester, S. M. DeSoto, M. Wang, S. Sridharan, R. L. Halbach, D. Richardson, W. Bright, M. M. Sarraj, J. R. Heliums, C. L. Betty, and G. Westphal, “A CMOS ADSL Codec for Central Office Applications,” IEEE J. Solid-State Circuits, vol. 36, pp. 356–365, March 2001.CrossRefGoogle Scholar
  13. [13]
    D. S. Langford, B. J. Tesch, B. E. Wiliams, and G. R. Nelson, “A BiCMOS Analog Front-End Circuit for an FDM-Based ADSL System,” IEEE J. Solid-State Circuits, vol. 33, pp. 1383–1393, September 1998.CrossRefGoogle Scholar
  14. [14]
    “Digital cellular telecommunication system: Radio transmission and reception (GSM 5.05),” European Telecommunication Standards Inst. (ETSI), Sophia Antip-olis, France.Google Scholar
  15. [15]
    T. Stetzler, I. Post, J. Havens, and M. Koyama, “A 2.7–4.5 V single chip GSM transceiver RF integrated circuit,” IEEE J. Solid-State Circuits, vol. 30, pp. 1421–1429, December 1995.CrossRefGoogle Scholar
  16. [16]
    T. Yamawaki, M. Kokubo, K. Irie, H. Matsui, T. Endou, H. Hagisawa, T. Fumya, Y. Shimizu, M. Katagishi, and J. Hildersley, “A 2.7-V GSM RF transceiver IC,” IEEE J. Solid-State Circuits, vol. 32, pp. 2089–2096, December 1997.CrossRefGoogle Scholar
  17. [17]
    P. Orsatti, F. Piazza, and Q. Huang, “A 20-mA-receive, 55-m A-transmit, single-chip GSM transceiver in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, vol. 34, pp. 232–233, December 1999.CrossRefGoogle Scholar
  18. [18]
    A. A. Abidi, “Direct conversion radio transceivers for digital communications,” IEEE J. Solid-State Circuits, vol. 30, pp. 1399–1410, December 1995.CrossRefGoogle Scholar
  19. [19]
    A. Rofougaran, G. Chang, J. J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, J. Min, E. W. Roth, A. A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-um CMOS—Part II: Receiver design,” IEEE J. Solid-State Circuits, vol. 33, pp. 535–547, April 1998.CrossRefGoogle Scholar
  20. [20]
    D. K. Shaeffer and T. H. Lee, Low-Power CMOS Radio Receivers. Kluwer Academic Publishers, Norwell (MA), 1999.Google Scholar
  21. [21]
    W. Thomann, J. Fenk, R. Hagelauer, and R. Weigel, “Fully Integrated W-CDMA IF Receiver and IF Transmitter Including IF Synthesizer and On-Chip VCO for UMTS Mobiles,” IEEE J. Solid-State Circuits, vol. 36, pp. 1407–1419, September 2001.CrossRefGoogle Scholar
  22. [22]
    J. Crols, and M. Steyaert, CMOS Wireless Transceiver Design. Kluwer Academic Publishers, Dordrecht (The Netherlands), 1997.MATHGoogle Scholar
  23. [23]
    M. S. J. Steyaert, J. Janssens, B. de Muer, M. Borremans, and N. Itoh, “A 2-V CMOS cellular transceiver front-end,” IEEE J. Solid-State Circuits, vol. 35, pp. 1895–1907, December 2000.CrossRefGoogle Scholar
  24. [24]
    S. Tadjpour, E. Cijvat, E. Hegazi and A. A. Abidi, “A 900-Mhz Dual-Conversion Low-IF GSM Receiver in 0.35-μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1992–2002, December 2001.CrossRefGoogle Scholar
  25. [25]
    A. Rofougaran, G. Chang, J. J. Rael, J. Y.-C. Chang, M. Rofougaran, P. J. Chang, M. Djafari, M.-K. Ku, E. W. Roth, A. A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-um CMOS—Part I: Architecture and transmitter design,” IEEE J. Solid-State Circuits, vol. 33, pp. 515–534, April 1998.CrossRefGoogle Scholar
  26. [26]
    J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K.-C. Tsai, C.-W. Lee, and P. R. Gray, “A 1.75-GHz Highly Integrated Narrow-Band CMOS Transmitter with Harmonic-Rejection Mixers,” IEEE J. of Solid-State Circuits, vol. 36, pp. 2003–2015, December 2001.CrossRefGoogle Scholar
  27. [27]
    F. Behbahani, A. Karimi-Sanjaani, W.-G. Tan, A. Roithmeier, J. C. Leete, K. Hoshino, and A. A. Abidi, “Adaptive Analog IF Signal Processor for a Wide-Band CMOS Wireless Receiver,” IEEE J. Solid-State Circuits, vol. 36, pp. 1205–1217, August 2001.CrossRefGoogle Scholar
  28. [28]
    H. Khorramabadi, M. J. Tarsia, and N. S. Woo, “Baseband Filters for IS-95 CDMA Receiver Applications Featuring Digital Automatic Frequency Tuning,” Digest of Technical Papers, International Solid-State Circuits Conference, pp. 172-173, February 1996.Google Scholar
  29. [29]
    R. K. Hester, S. Mukherjee, D. Padgett, D. Richardson, W. Bright, M. M. Sarraj, J. T. Nabicht, M. D. Agah, A. Bellaouar, I. Chaudhry, J. R. Heliums, K. Islam, A. Loloee, C.-Y. Tsay, and G. Westphal, “CODEC for Echo-Canceling Full-Rate ADSL Modems,” IEEE J. Solid-State Circuits, vol. 34, pp. 1973–1985, December 1999.CrossRefGoogle Scholar
  30. [30]
    C. Conroy, S. Sheng, A. Feldman, G. Uehara, A. Yeing, C.-J. Hung, V. Subramanian, P. Chiang, P. Lai, X. Si, J. Fan, D. Flynn, and M. He, “A CMOS Analog Front-End IC for DMT ADSL,” Digest of Technical Papers, International Solid-State Circuits Conference, pp. 240-241, February 1999.Google Scholar
  31. [31]
    H. Darabi, and A. A. Abidi, “A4.5-mW 900-MHz CMOS Receiver for Wireless Paging,” IEEE J. Solid-State Circuits, vol. 35, pp. 1085–1096, August 2000.CrossRefGoogle Scholar
  32. [32]
    T. Hollman, S. Lindfors, M. Länsirinne, J. Jussila, and K. A. I. Halonen, “A 2.7-V CMOS Dual-Mode Baseband Filter for PDC and WCDMA,” IEEE J. Solid-State Circuits, vol. 36, pp. 1148–1153, July 2001.CrossRefGoogle Scholar
  33. [33]
    Z.-Y. Chang, D. Macq, D. Haspeslagh, P. M. P. Spruyt, and B. L. A. G. Goffart, “A CMOS Analog Front-End Circuit for an FDM-Based ADSL System,” IEEE J. Solid-State Circuits, vol. 30, pp. 1449–1456, December 1995.CrossRefGoogle Scholar
  34. [34]
    D. K. Shaeffer, A. R. Shahani, S. S. Mohan, H. Samavati, H. R. Rategh, M. M. Hershenson, M. Xu, C. P. Yue, D. J. Eddleman, and T. H. Lee, “A 115-mW, 0.5-μm CMOS GPS Receiver with Wide Dynamic-Range Active Filters,” IEEE J. Solid-State Circuits, vol. 33, pp. 2219–2231, December 1998.CrossRefGoogle Scholar
  35. [35]
    H. Yamazaki, K. Oishi, and K. Gotoh, “An Accurate Center Frequency Tuning Scheme for 450-kHz CMOS Gm-C Bandpass Filters,” IEEE J. Solid-State Circuits, vol. 34, pp. 1691–1697, December 1999.CrossRefGoogle Scholar
  36. [36]
    K. Lee, J. Park, J.-W. Lee, S.-W. Lee, H. K. Huh, D.-K. Jeong, and W. Kim, “A Single-Cip 2.4-GHz Direct-Conversion CMOS Receiver for Wireless Local Loop using Muliphase Reduced Frequency Conversion Technique,” IEEE J. Solid-State Circuits, vol. 36, pp. 800–809, May 2001.CrossRefGoogle Scholar
  37. [37]
    G. Nicollini, P. Confalonieri, C. Crippa, A. Nagari, S. Mariani, A. Calloni, M. Moioli, and C. Dallavalle, “A High-Performance Analog Front-End 14-Bit Codec for 2.7-V Digital Cellular Phones,” IEEE J. Solid-State Circuits, vol. 33, pp. 1158–1167, August 1998.CrossRefGoogle Scholar
  38. [38]
    C. S. Wong, “A 3-V GSM Baseband Transmitter,” IEEE J. Solid-State Circuits, vol. 34, pp. 725–730, May 1999.CrossRefGoogle Scholar
  39. [39]
    A. Gattani, D. W. Cline, P. J. Hurst, and P. M. Mosinskis, “A CMOS HDLS2 Analog Front-End,” IEEE J. Solid-State Circuits, vol. 35, pp. 1964–1975, December 2000.CrossRefGoogle Scholar
  40. [40]
    I. Mehr, P. Maulik, and D. Paterson, “A 12-bit Integrated Analog Front End for Broadband Wieline Networks,” IEEE J. Solid-State Circuits, vol. 37, pp. 302–309, March 2002.CrossRefGoogle Scholar
  41. [41]
    R. Gregorian, and G. C. Temes, Analog MOS Integrated Circuits for Signal Processing. John Wiley, New York, 1986.Google Scholar
  42. [42]
    K. Nishimura, Optimal Partitioning of Analog and Digital Circuitry in Mixed-Signal Circuits for Signal Processing, PhD. Dissertation, University of California, Berkeley, 1993.Google Scholar
  43. [43]
    B. Brandt, and B. A. Wooley, “A 50-MHz Multibit ΣΔ Modulator for 12-b 2-MHz A/D Conversion,” IEEE J. Solid-State Circuits, vol. 34, pp. 748–760, June 1999.CrossRefGoogle Scholar
  44. [44]
    Y. Geerts, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 3.3-V, 15-Bit, Delta-Sigm ADC with a Signal Bandwidth of 1.1MHz for ADSL Applications,” IEEE J. Solid-State Circuits, vol. 34, pp. 927–936, June 1999.CrossRefGoogle Scholar
  45. [45]
    T. Burger, and Q. Huang, “A 13.5-mW 185-Msample/s ΣΔ Modulator for UMTS/GSM Dual-Standard IF Reception,” IEEE J. Solid-State Circuits, vol. 36, pp. 1868–1878, December 2001.CrossRefGoogle Scholar
  46. [46]
    F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez. Top-down Design of High-Performance Sigma-Delta Modulators. Kluwer Academic Publishers, Dordrecht (The Netherlands), 1999.Google Scholar
  47. [47]
    E. J. van der Zwan, K. Philips and C. A. A. Bastiaansen, “A 10.7-MHz IF-to-Base-band ΣΔ A/D Conversion System for AM/FM Radio Receivers”, IEEE J. Solid-State Circuits, vol. 35, pp. 1810–1819, December 2000.CrossRefGoogle Scholar
  48. [48]
    J. van Engelen, R. van de Plasshe, E. Stikvoort, and A. Venes, “A Sixth-Order Continuous-Time Bandpass Sigma-Delta Modulator For Digital Radio IF”, IEEE J. Solid-State Circuits, vol. 34, pp. 1753–1764, December 1999.CrossRefGoogle Scholar
  49. [49]
    L. Breems, and J. H. Huijsing, Continuous-Time Sigma-Delta Modulation for A/D Conversion in Radio Receivers. Kluwer Academic Publishers, Dordrecht (The Netherlands), 2001.Google Scholar
  50. [50]
    B. Razavi, RF Microelectronics, Prentice Hall, Upper Saddle River (NJ), 1998.Google Scholar
  51. [51]
    T. Hanusch, F. Jehring, H.-J. Jentschel, and W. Kluge, “Analog Baseband IC for Dual Mode Direct Conversion Receiver,” Proc. of the European Solid-State Circuits Conference, pp. 244-246 and 249, September 1996.Google Scholar
  52. [52]
    T.-L. D. Au, Programmable, Low-noise, High-linearity Baseband Filter for a Fully-Integrated, Multi-Standard, CMOS RF Receiver. Masters Thesis, University of California at Berkeley, January 1999.Google Scholar
  53. [53]
    H. Elwan, A. M. Soliman, and M. Ismail, “A CMOS Norton Amplifier-Based Digitally Controlled VGA for Low-Power Wireless Applications,” IEEE Trans. Circuits and Systems II, vol. 48, pp. 245–254, March 2001.CrossRefGoogle Scholar
  54. [54]
    J. Jussila, J. Ryynãnen, K. Kivekãs, L. Sumanen, A. Pãrssinen, and K. A. I. Halo-nen, “A 22-mA 3.0dB NF Direct Conversion Receiver for 3G WCDMA,” IEEE J. Solid-State Circuits, vol. 36, pp. 2025–2029, December 2001.CrossRefGoogle Scholar
  55. [55]
    J. Rudell, J. Weldon, J. Ou, L. Lin, and P. R. Gray, “An integrated GSM/DECT receiver: Design specification,” UCB Electronics Laboratory Memo., Berkeley, CA, 1998.Google Scholar
  56. [56]
    S. Fitz, “Receiver architectures for GSM handsets,” in IEE Coll. Design of Digital Cellular Handsets, London, U.K., 1998, pp. 3/1-3/10.Google Scholar
  57. [57]
    W. H. Sansen, and R. G. Meyer, “Distortion in bipolar transistor variable gain amplifiers,” IEEE J. Solid-State Circuits, vol. 8, pp. 275–282, August 1973.CrossRefGoogle Scholar
  58. [58]
    F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS 10 MHz-IF down-converter with on-chip broadband circuit for large image-suppression,” in Proc. Symp. VLSI Circuits, Kyoto, Japan, 1999, pp. 83-86.Google Scholar
  59. [59]
    I. Mehr, P. C. Maulik, and D. Paterson, “A 12-bit Integrated Analog Front End for Broadband Wireline Networks,” IEEE J. Solid-State Circuits, vol. 37, pp. 302–309, March 2002.CrossRefGoogle Scholar
  60. [60]
    K. R. Laker and W. M. C. Sansen, Design of Analog Integrated Circuits and Systems. McGraw-Hill, New York, 1994.Google Scholar
  61. [61]
    R. Schaumann, M. S. Ghausi and K. R. Laker, Design of Analog Filters. Prentice-Hall, Englewood Cliffs, 1990.Google Scholar
  62. [62]
    K. D. Peterson, A. Nedungadi and R. L. Geiger, “Amplifier Design Considerations for High Frequency Monolithic Filters,” Proceedings of the 1987 European Conf. on Circuit Theory and Design, pp. 321-326, September 1987.Google Scholar
  63. [63]
    D. Leenaerst, J. van der Tang, and C. Vaucher, Circuit Design for RF Transceiver. Kluwer Academic Publishers, Dordrecht (The Netherlands), 2001.Google Scholar
  64. [64]
    J. Janssens and M. Steyaert, CMOS Cellular Receiver Front-Ends: From Specification to Realization. Kluwer Academic Publishers, Dordrecht (The Netherlands), 2002.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Manuel Delgado-Restituto
  • Angel Rodríguez-Vázquez

There are no affiliations available

Personalised recommendations