Advertisement

Optical Phenomena in Photonic Crystals

  • Susumu Noda
  • Toshihiko Baba
Chapter

Abstract

This chapter discusses optical phenomena in photonic crystals, which are unique and cannot be seen in ordinary materials. The essential points are outlined with examples of device applications. Therefore, readers will find some theoretical and experimental details, which have not been explained in Chapter 1. Better understanding of this chapter will be obtainable with these details described in Chapters 3 and 4.

Keywords

Photonic Crystal Triangular Lattice Effective Refractive Index Diffraction Grating Optical Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, Phys. Rev. Lett 77, 3787 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    E. Yablonovich, J. Opt. Soc. Am. B 10, 283 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    A. Chutinan, and S. Noda, Phys. Rev. B 62, 4488 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, J. Lightwave Technology 17, 1948 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Science 289, 604 (2000).ADSCrossRefGoogle Scholar
  7. 1.
    M. Imada, S. Noda, A. Chutinan, T. Tokuda, H. Kobayashi, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).ADSCrossRefGoogle Scholar
  8. 2.
    M. Notomi, H. Suzuki, and T. Tamamura, Appl. Phys. Lett. 78, 1325 (2001).ADSCrossRefGoogle Scholar
  9. 3.
    S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki, Science 293, 1123 (2001).ADSCrossRefGoogle Scholar
  10. 1.
    S. Kawakami, Electron. Lett. 33, 1260 (1997).CrossRefGoogle Scholar
  11. 2.
    H. Kosáka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B. 58, R10096 (1998).ADSCrossRefGoogle Scholar
  12. 3.
    H. Kosáka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, J. Lightwave Technol. 17, 2032 (1999).ADSCrossRefGoogle Scholar
  13. 4.
    H. Kosáka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).ADSCrossRefGoogle Scholar
  14. 5.
    H. Kosáka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1212 (1999).ADSCrossRefGoogle Scholar
  15. 6.
    H. Kosáka, A. Tomita, T. Kawashima, T. Sato, and S. Kawakami, Phys. Rev. B 62 1477 (2000).ADSCrossRefGoogle Scholar
  16. 7.
    H. Kosáka, Physics (Buturi) 55, 172 (2000, in Japanese).Google Scholar
  17. 1.
    J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light, Princeton University Press (1995).MATHGoogle Scholar
  18. 2.
    C. M. Soukoulis Ed., Photonic Band Gap Materials, Plenum Press (1995).Google Scholar
  19. 3.
    P. St. J. Russell, T. A. Birk, and F. D. Lloyd-Lucas, Confined Electrons and Phonons (Ed. by E. Burstein, and C. Weisbuch), Plenum Press (1995).Google Scholar
  20. 4.
    K. Ohtaka, T. Ueta, and Y. Tanabe, J. Phys. Soc. Jpn. 65, 3068 (1996).ADSCrossRefGoogle Scholar
  21. 5.
    M. Notomi, Phys. Rev. B 62, 10696 (2000).ADSCrossRefGoogle Scholar
  22. 6.
    M. Notomi, Proc. SPIE 4283, 69 (2001).Google Scholar
  23. 7.
    M. Notomi, T. Tamamura, H. Ohtera, O. Hanaizumi, and S. Kawakami, Phys. Rev. B 61, 7165 (2000).ADSCrossRefGoogle Scholar
  24. 8.
    H. Kosáka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Phys. Rev. B 58, R 10096 (1998).ADSCrossRefGoogle Scholar
  25. 9.
    R. Zengerle, J. Mod. Opt. 34, 1589 (1987).ADSCrossRefGoogle Scholar
  26. 10.
    It is difficult to distinguish strictly the photonic crystal and a diffraction grating. Here, the characteristic of diffraction grating is considered to occur from the band folding by the periodicity. In photonic crystals, not only the band folding but also the opening of the PBG occur, and peculiar effect appear not only at the Bragg frequency but also at other frequencies. The generation of diffracted wave, which is expressed by the formula, is due to the band folding.Google Scholar
  27. 11.
    J. M. Ziman, Principles of the theory of solids, Cambridge University Press (1972).Google Scholar
  28. 12.
    The refractive index defined here is an index that determines the refraction phenomenon described by Snells law. So, it corresponds to the phase index of a dielectric medium, and does not the group index given by the group velocity of light.Google Scholar
  29. 13.
    The band structure and dispersion surface were calculated by the plane wave expansion method.Google Scholar
  30. 14.
    A. Taflove, Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House (1995).MATHGoogle Scholar
  31. 15.
    D. R. Smith, W. J. Padilla, D. C. Vier, R. Shelby, S. C. Nemat-Nasser, N. Knoll, and S. Schultz, Photonic Crystals and Light Localization in the 21st Century (Ed. by C. M. Soukoulis, Kluwer Academic (2001).Google Scholar
  32. 16.
    V. G. Veselago, Soviet Physics USPKHI, 10, 509 (1968).ADSCrossRefGoogle Scholar
  33. 17.
    J. B. Pendry et al., IEEE Trans. MTT, 47, 2075 (1999).CrossRefGoogle Scholar
  34. 18.
    D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).ADSCrossRefGoogle Scholar
  35. 19.
    R. A. Shelby, D. R. Smith, and S. Shultz, Science 292, 77 (2001).ADSCrossRefGoogle Scholar
  36. 20.
    L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media, Pergamon Press (1985).Google Scholar
  37. 21.
    Progress in Electromagnetics Research Symposium, Cambridge, Massachusetts, June (2002).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Susumu Noda
    • 1
  • Toshihiko Baba
    • 2
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Yokohama National UniversityYokohamaJapan

Personalised recommendations