Skip to main content

Future Directions: Challenges and Research Opportunities

  • Chapter
Percutaneous Vertebroplasty

Abstract

Percutaneous vertebroplasty (PV) has created a tremendous amount of interest among patients, their families, and physicians as a means of addressing problems caused by osteoporosis or neoplasm-induced vertebral compression fractures (VCFs). However, interest in the procedure is not limited to these treatment groups. The introduction of PV in 1984, and its growing acceptance as the standard of care for the treatment of painful VCFs, have encouraged scientific investigations into the palliative mechanisms of the procedure.1–9 Manufacturers have also been eager to develop new devices to meet the demands of the procedure. In the next decade, we can expect to see a growing body of research that will expand the current knowledge about minimally invasive procedures, including (but not limited to) mechanical augmentation of the spine.10–13 We anticipate that commercial efforts will follow rapidly, with the development of new devices and materials that enhance and improve our capabilities for these interventions. This chapter presents an overview of what we believe needs to be addressed and where we are likely to see advancements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tohmeh AG, Mathis JM, Fenton DC, et al. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 1999; 24(17):1772–1776.

    Article  PubMed  CAS  Google Scholar 

  2. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 2000; 25(9): 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  3. Belkoff SM, Maroney M, Fenton DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 1999; 25(2 suppl):23S-26S.

    Article  Google Scholar 

  4. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999; 25(2 suppl):17S-21S.

    Article  Google Scholar 

  5. Jasper LE, Deramond H, Mathis JM, et al. The effect of monomer-to-powder ratio on the material properties of Cranioplastic. Bone 1999; 25(2 suppl):27S-29S.

    Article  Google Scholar 

  6. Wilson DR, Myers ER, Mathis JM, et al. Effect of augmentation on the mechanics of vertebral wedge fractures. Spine 2000; 25(2): 158–165.

    Article  PubMed  CAS  Google Scholar 

  7. Belkoff SM, Mathis JM, Fenton DC, et al. An ex vivo biomechanical evaluation of an inflatable bone tamp used in the treatment of compression fracture. Spine 2001; 26(2):151–156.

    Article  PubMed  CAS  Google Scholar 

  8. Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty: the effect of cement volume on mechanical behavior. Spine 2001; 26(14):1537–1541.

    Article  PubMed  CAS  Google Scholar 

  9. Jasper LE, Deramond H, Mathis JM, et al. Material properties of various cements for use with vertebroplasty. J Mater Sci Mater Med 2002; 13:1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Bostrom MP, Lane JM. Future directions. Augmentation of osteoporotic vertebral bodies. Spine 1997; 22(24 suppl):38S-42S.

    Article  Google Scholar 

  11. Schildhauer TA, Bennett AP, Wright TM, et al. Intravertebral body reconstruction with an injectable in situ-setting carbonated apatite: biomechanical evaluation of a minimally invasive technique. J Orthop Res 1999; 17(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  12. Bai B, Jazrawi LM, Kummer FJ, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fractures. Spine 1999; 24(15): 1521–1526.

    Article  PubMed  CAS  Google Scholar 

  13. Wehrli FW, Ford JC, Haddad JG. Osteoporosis: clinical assessment with quantitative MR imaging in diagnosis. Radiology 1995; 196(3): 631–641.

    PubMed  CAS  Google Scholar 

  14. Galibert P, Deramond H, Rosat P, et al. [Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebro-plasty] Neurochirurgie 1987; 33(2):166–168.

    PubMed  CAS  Google Scholar 

  15. Al-Assir I, Perez-Higueras A, Florensa J, et al. Percutaneous verte-broplasty: a special syringe for cement injection. Am J Neuroradiol 2000; 21(1):159–161.

    PubMed  CAS  Google Scholar 

  16. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. Am J Neuroradiol 1997; 18(10):1897–1904.

    PubMed  CAS  Google Scholar 

  17. Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethyl methacrylate. Technique, indications, and results. Radiol Clin North Am 1998; 36(3)533–546.

    Article  PubMed  CAS  Google Scholar 

  18. Padovani B, Kasriel O, Brunner P, et al. Pulmonary embolism caused by acrylic cement: a rare complication of percutaneous vertebroplasty. Am J Neuroradiol 1999; 20(3):375–377.

    PubMed  CAS  Google Scholar 

  19. Saha S, Pal S. Mechanical properties of bone cement: a review. J Biomed Mater Res 1984; 18(4):435–462.

    Article  PubMed  CAS  Google Scholar 

  20. Wenda K, Scheuermann H, Weitzel E, et al. Pharmacokinetics of methyl methacrylate monomer during total hip replacement in man. Arch Orthop Trauma Surg 1988; 107(5):316–321.

    Article  PubMed  CAS  Google Scholar 

  21. Belkoff SM, Deramond H. The effect of monomer on MCF-7 breast cancer cell viability. Poster presented at the 11th Interdisciplinary Research Conference on Biomaterials (Groupe de Recherches Interdisciplinaire sur les Biomateriaux Ostéo-articulaires Injectables, GRIBOI), March 8–9, 2001.

    Google Scholar 

  22. McBroom RJ, Hayes WC, Edwards WT, et al. Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 1985; 67A: 1206–1214.

    PubMed  CAS  Google Scholar 

  23. Hayes WC, Piazza SJ, Zysset PK. Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Radiol Clin North Am 1991; 29(1):1–18.

    PubMed  CAS  Google Scholar 

  24. Dallap BL, Gadaleta S, Erbe E, et al. Histological, radiological, and mechanical comparison of polymethyl methacrylate (PMMA) and a bioactive bone cement in an ovine model [abstract]. Trans Orthop Res Soc 1999; 24:503.

    Google Scholar 

  25. Cotten A, Boutry N, Cortet B, et al. Percutaneous vertebroplasty: state of the art. Radiographics 1998; 18(2):311–323.

    PubMed  CAS  Google Scholar 

  26. Lazarus JA. A computer integrated surgical system for fluoroscopy-guided percutaneous vertebroplasty [thesis]. Johns Hopkins University, Baltimore, MD, 2000.

    Google Scholar 

  27. Cotten A, Deprez X, Migaud H, et al. Malignant acetabular osteolyses: percutaneous injection of acrylic bone cement. Radiology 1995; 197(1):307–310.

    PubMed  CAS  Google Scholar 

  28. Gangi A, Dietemann JL, Schultz A, et al. Interventional radiologic procedures with CT guidance in cancer pain management. Radiographics 1996; 16(6):1289–1304.

    PubMed  CAS  Google Scholar 

  29. Roubertou H. Étude biomecanique in vitro d’extrémités supérieures du fémur sans et avec injection intra-osseuse de ciment acrylique. Thesis. Université de Picardie, September 12, 1997.

    Google Scholar 

  30. Finsen V, Benum P. Past fractures indicate increased risk of hip fracture. Acta Orthop Scand 1986; 57:337–339.

    Article  PubMed  CAS  Google Scholar 

  31. Asnis SE, Ernberg JJ, Bostrom MP, et al. Cancellous bone screw thread design and holding power. J Orthop Trauma 1996; 10(7):462–469.

    Article  PubMed  CAS  Google Scholar 

  32. Chapman JR, Harrington RM, Lee KM, et al. Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 1996; 118(3):391–398.

    Article  PubMed  CAS  Google Scholar 

  33. Ruland CM, McAfee PC, Warden KE, et al. Triangulation of pedicular instrumentation. Abiomechanical analysis. Spine 1991; 16(6 suppl): S270-S276.

    Article  Google Scholar 

  34. Kostuik JP, Heggeness MH. Surgery of the osteoporotic spine. In: Frymoyer JW, ed. The Adult Spine: Principles and Practice. 2nd ed. Philadelphia: Lippincott-Raven; 1997:1639–1664.

    Google Scholar 

  35. Heller KD, Zilkens KW, Hammer J, et al. Does the anchorage form and depth influence the pull-out strength of screws from bone cement? An experimental study. Arch Orthop Trauma Surg 1997; 116(1–2):88–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathis, J.M., Belkoff, S.M., Deramond, H. (2002). Future Directions: Challenges and Research Opportunities. In: Mathis, J.M., Deramond, H., Belkoff, S.M. (eds) Percutaneous Vertebroplasty. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3694-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3694-6_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3696-0

  • Online ISBN: 978-1-4757-3694-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics