Advertisement

Electromagnetic Fundamentals

  • George W. Hanson
  • Alexander B. Yakovlev

Abstract

The coverage of electromagnetics in this chapter is somewhat brief, especially the physical aspects of the theory, since it is assumed that the reader is familiar with basic field theory at an undergraduate or beginning graduate level. For a more extensive introduction to electromagnetic theory, the references at the end of this chapter may be consulted.

Keywords

Helmholtz Equation Source Density Exclusion Volume Constitutive Quantity Electric Field Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Rothwell, E.J. and Cloud, M.J. (2001). Electromagnetics, Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  2. [2]
    Collin, R.E. (1991). Field Theory of Guided Waves, 2nd ed., New York: IEEE Press.MATHGoogle Scholar
  3. [3]
    Tai, C.T. (1994). Dgadic Green Functions in Electromagnetic Theory, 2nd ed., New York: IEEE Press.Google Scholar
  4. [4]
    Portis, A.M. (1978). Electromagnetic Fields: Sources and Media, New York: Wiley.Google Scholar
  5. [5]
    Kong, J.A. (1990). Electromagnetic Wave Theory, 2nd ed., New York: Wiley.Google Scholar
  6. [6]
    Hansen, T.B. and Yaghjian, A.D. (1999). Plane-Wave Theory of TimeDomain Fields, New York: IEEE Press.CrossRefGoogle Scholar
  7. [7]
    Gel’fand, I.M. and Shilov, G.E. (1964). Generalized Functions, Vol. I, New York: Academic Press.MATHGoogle Scholar
  8. [8]
    Van Bladel, J. (1991). Singular Electromagnetic Fields and Sources, Oxford: Clarendon Press.Google Scholar
  9. [9]
    Kellogg, O.D. (1929). Foundations of Potential Theory, New York: Dover.Google Scholar
  10. [10]
    Budak, B.M. and Fomin, S.V. (1973). Multiple Integrals, Field Theory and Series, Moscow: MIR Publishers.MATHGoogle Scholar
  11. [11]
    Courant, R. (1974). Introduction to Calculus and Analysis, Vol. II, New York: Wiley.MATHGoogle Scholar
  12. [12]
    Mikhlin, S.G. (1965). Multidimensional Singular Integrals and Integral Equations, Oxford: Pergamon Press.MATHGoogle Scholar
  13. [13]
    Müller, C. (1969). Foundations of the Mathematical Theory of Electromagnetic Waves, New York: Springer-Verlag.MATHGoogle Scholar
  14. [14]
    Yaghjian, A.D. (1980). Electric dyadic Green’s functions in the source region, IEEE Proc., Vol. 68, pp. 248–263, Feb.CrossRefGoogle Scholar
  15. [15]
    Yaghjian, A.D. (1985). Maxwellian and cavity electromagnetic fields within continuous sources, Am. J. Phys., Vol. 53, pp. 859–863, Sept.CrossRefGoogle Scholar
  16. [16]
    Silberstein, M. (1991). Application of a generalized Leibnitz rule for calculating electromagnetic fields within continuous source regions, Radio Science, Vol. 26, pp. 183–190, Jan.—Feb.CrossRefGoogle Scholar
  17. [17]
    Viola, M.S. and Nyquist, D.P. (1988). An observation on the Sommerfeld-integral representation of the electric dyadic Green’s function for layered media, IEEE Trans. Microwave Theory Tech., Vol. 36, pp. 1289–1292, Aug.MathSciNetCrossRefGoogle Scholar
  18. [18]
    Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics, Vol. II, New York: Interscience.Google Scholar
  19. [19]
    Lee, S.W., Boersma, J., Law, C.L., and Deschamps, G.A. (1980). Singularity in Green’s function and its numerical evaluation, IEEE Trans. Ant. Prop., Vol. AP-28, pp. 311–317, May.MathSciNetGoogle Scholar
  20. [20]
    Asvestas, J.S. (1983). Comments on “Singularity in Green’s function and its numerical evaluation,” IEEE Trans. Ant. Prop., Vol. AP-31, pp. 174–177, Jan.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Fikioris, J.G. (1965). Electromagnetic field inside a current-carrying region, J. Math. Phys., Vol. 6, pp. 1617–1620, Nov.MathSciNetCrossRefGoogle Scholar
  22. [22]
    Levine, H. and Schwinger, J. (1950). On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen, Comm. Pure and Appl. Math., Vol. III, pp. 355–391.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Ball, J.A.R. and Khan, P.J. (1980). Source region electric field derivation by a dyadic Green’s function approach, IEE Proc., Vol. 127, Part H, no. 5, pp. 301–304, Oct.Google Scholar
  24. [24]
    Chew, W.C. (1990). Waves and Fields in Inhomogeneous Media, New York: IEEE Press.Google Scholar
  25. [25]
    Harrington, R.F. (1961). Time-Harmonic Electromagnetic Fields, New York: McGraw-Hill.Google Scholar
  26. [26]
    Hanson, G.W. (1996). A numerical formulation of dyadic Green’s functions for planar bianisotropic media with applications to printed transmission lines, IEEE Trans. Microwave Theory Tech., Vol. 44, pp. 144–151, Jan.MathSciNetCrossRefGoogle Scholar
  27. [27]
    Samokhin, A.B. (1990). Investigation of problems of the diffraction of electromagnetic waves in locally non-uniform media, Comput. Maths. Math. Phys., Vol. 30, no. 1, pp. 80–90.MathSciNetCrossRefGoogle Scholar
  28. [28]
    Samokhin, A.B. (1992). Diffraction of electromagnetic waves by a locally non-homogeneous body and singular integral equations, Comput. Maths. Math. Phys., Vol. 32, no. 5, pp. 673–686.MathSciNetMATHGoogle Scholar
  29. [29]
    Samokhin, A.B. (1993). Integral equations of electrodynamics for three-dimensional structures and iteration methods for solving them (a review).” J. Comm. Tech. Electron., Vol. 38, no. 15, pp. 15–34.Google Scholar
  30. [30]
    Samokhin, A.B. (1994). An iterative method for the solution of integral equations applied to a scattering problem on a three-dimensional transparent body, Diff. Equations, Vol. 30, no. 12, pp. 1987–1997.MathSciNetMATHGoogle Scholar
  31. [31]
    Colton, D. and Kress, R. (1998). Inverse Acoustic and Electromagnetic Scattering Theory, New York: Springer.MATHGoogle Scholar
  32. [32]
    Born, N. and Wolf, E. (1980). Principles of Optics, 6th ed., New York: Pergamon Press.Google Scholar
  33. [33]
    Peterson, A.F., Ray, S.L., and Mittra, R. (1998). Computational Methods for Electromagnetics, New York: IEEE Press.Google Scholar
  34. [34]
    Cessenat, M. (1996). Mathematical Methods in Electromagnetism, Singapore: World Scientific.MATHGoogle Scholar
  35. [35]
    Mattuck, A. (1999). Introduction to Analysis, Englewood Cliffs, NJ: Prentice-Hall.MATHGoogle Scholar
  36. [36]
    Jones, D.S. (1986). Acoustic and Electromagnetic Waves, Oxford: Clarendon Press.Google Scholar
  37. [37]
    Jones, D.S. (1964). The Theory of Electromagnetism, Oxford: Pergamon Press.MATHGoogle Scholar
  38. [38]
    Jackson, J.D. (1975). Classical Electrodynamics, 2nd ed., New York: John Wiley.MATHGoogle Scholar
  39. [39]
    Van Bladel, J. (1985). Electromagnetic Fields, Washington: Hemisphere.Google Scholar
  40. [40]
    Lindell, I.V. (1992). Methods for Electromagnetic Field Analysis, Oxford: Clarendon Press.Google Scholar
  41. [41]
    Stratton, J. (1941). Electromagnetic Theory, New York: McGraw-Hill.MATHGoogle Scholar
  42. [42]
    Collin, R.E. (1986). The dyadic Green’s functions as an inverse operator, Radio Science, Vol. 21, pp. 883–890, Nov.—Dec.CrossRefGoogle Scholar
  43. [43]
    Pandofsky, W.K.H. and Phillips, M. (1962). Classical Electricity and Magnetism, Reading, MA: Addison-Wesley.Google Scholar
  44. [44]
    Amazigo, J.C. and Rubenfeld, L.A. (1980). Advanced Calculus, New York: Wiley.MATHGoogle Scholar
  45. [45]
    Sternberg, W.J. and Smith, T.L. (1946). The Theory of Potential and Spherical Harmonics, Toronto: University of Toronto Press.Google Scholar
  46. [46]
    Champeney, D.C. (1987). A Handbook of Fourier Theorems, Cambridge: Cambridge University Press.MATHGoogle Scholar
  47. [47]
    Mikhlin, S. G. (1970). Mathematical Physics, An Advanced Course, Amsterdam: North-Holland.MATHGoogle Scholar
  48. [48]
    Elliott, R.S. (1981). Antenna Theory and Design, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • George W. Hanson
    • 1
  • Alexander B. Yakovlev
    • 2
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of WisconsinMilwaukeeUSA
  2. 2.Department of Electrical EngineeringUniversity of MississippiUniversityUSA

Personalised recommendations