Skip to main content

Porous Silicon as an Open Dielectric Nanostructure: an Ensemble of Aspheric Silicon Nanocrystals

  • Chapter
  • 474 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Reducing the dimensions of semiconductor structures is nowadays a well established field in solid state physics, not at least on demand by the preceding miniaturization in microelectronics. To confine carriers in two dimensions was one of the first steps towards the current nano-science and technology. At present, three dimensional confinement of carriers in quantum dots or nanocrystals (NCs) with typical dimensions of the order of nanometers is a standard technique to modify the physical properties known from the bulk material. One of the most prominent consequences arising from the reduced dimensionality is an altered density of states which is accompanied by a widening of the bandgap with decreasing size due to quantum confinement. Therefore the optical properties, especially the photoluminescence (PL), of such objects differ significantly from that of the bulk material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. I. Ekimov, A. A. Onushchenko and V. A. Tzekhomskii, Sov. Phys. Chem. Glass 6, 511 (1980).

    Google Scholar 

  2. A. Henglein, Ber. Bunsenges. Phys. Chem. 88, 301 (1982).

    Google Scholar 

  3. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Google Scholar 

  4. V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).

    Google Scholar 

  5. A. G. Cullis, L. T. Canham and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).

    Google Scholar 

  6. L. Canham, Nature 408, 411 (2000).

    Google Scholar 

  7. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franco and F. Priolo, Nature 408, 440 (2000).

    Google Scholar 

  8. P. Fauchet, Physics World 14, 19 (2001).

    Google Scholar 

  9. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, Nature 384, 338 (1996).

    Article  CAS  Google Scholar 

  10. G. Vincent, Appl. Phys. Lett.64, 2367 (1994).

    Google Scholar 

  11. E. Yablonovitch, Phys. Rev. Lett.58, 2059 (1987).

    Google Scholar 

  12. E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 63, 1950 (1989).

    Article  CAS  Google Scholar 

  13. O. Bisi, S. Ossicini and L. Pavesi, Surface Science Reports 38, 1 (2000).

    Article  CAS  Google Scholar 

  14. D. Kovalev, H. Heckler, G. Polisski and F. Koch, phys. stat. sol. (b) 215, 871 (1999).

    Article  CAS  Google Scholar 

  15. A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956).

    CAS  Google Scholar 

  16. K. H. Jung, S. Shih and D. L. Kuong, J. Electrochem. Soc. 140, 3046 (1993).

    Article  CAS  Google Scholar 

  17. A. Halimaoui, in Porous Silicon Science and Technology, edited by J. C. Vial and J. Derrien ( Springer, Berlin, 1995 ) p. 33.

    Book  Google Scholar 

  18. L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox and T. P. Lynch, Nature 368, 133 (1994).

    Article  CAS  Google Scholar 

  19. St. Frohnhoff, R. Arens-Fischer, T. Heinrich, J. Fricke, M. Arntzen and W. Theiss, Thin Solid Films 255, 115 (1995).

    Article  CAS  Google Scholar 

  20. V. Lehmann, R. Stengl and A. Luigart, Materials Science and Engineering B69–70, 11 (2000).

    Google Scholar 

  21. M. Christophersen, J. Carstensen, A. Feuerhake and H. Föll, Materials Science and Engineering B69–70, 194 (2000).

    Google Scholar 

  22. D. A. G. Bruggeman, Ann. Phys. (Paris) 24, 636 (1935).

    CAS  Google Scholar 

  23. D. Kovalev, G. Polisski, M. Ben-Chorin, J. Diener and F. Koch, J. Appl. Phys. 80, 5978 (1996).

    Article  CAS  Google Scholar 

  24. J. E. Spanier and I. P. Herman, Phys. Rev. B 61, 10437 (2000).

    Article  CAS  Google Scholar 

  25. P. Menna, G. Di Francia and V. La Ferrara, Solar Energy Materials and Solar Cells 37, 13 (1995).

    Article  CAS  Google Scholar 

  26. H. F. Arrand, T. M. Benson, A. Loni, M. G. Krueger, M. Thönissen and H. Luth, Electron. Lett. 33, 1724 (1997).

    Article  CAS  Google Scholar 

  27. M. Araki, H. Koyama and N. Koshida, Appl. Phys. Lett. 69, 2956 (1996).

    Article  CAS  Google Scholar 

  28. V. Mulloni and L. Pavesi, Appl. Phys. Lett. 76, 2523 (2000).

    Article  CAS  Google Scholar 

  29. M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lath, H. Munder, W. Theiß, M. Wernke and P. Grosse, J. Phys. D 27, 1333 (1994).

    Google Scholar 

  30. C. Mazzoleni and L. Pavesi, Appl. Phys. Lett. 67, 2983 (1995).

    Article  CAS  Google Scholar 

  31. P. A. Snow, E. K. Squire, P. St. J. Russell and L. T. Canham, J. Appl. Phys. 86, 1781 (1999).

    Article  CAS  Google Scholar 

  32. J. Diener, D. Kovalev, G. Polisski and F. Koch, Phys. Stat. Sol. (a) 182, 341 (2000).

    Article  CAS  Google Scholar 

  33. J. Diener, D. Kovalev, G. Polisski, N. Künzner and F. Koch, Phys. Stat. Sol. (b) 224, 297 (2000).

    Article  Google Scholar 

  34. A. V. Andrianov, D. I. Kovalev, N. N. Zinov’ev and I. D. Yaroshetskü, JETP Lett. 58, 427 (1993).

    Google Scholar 

  35. H. Koyama and N. Koshida, Phys. Rev. B 52, 2649 (1995).

    Article  CAS  Google Scholar 

  36. S. V. Gaponenko, E. P. Petrov, U. Waggon, O. Wind, C. Klingshim, Y. H. Xie, I. N. Germanenkom and A. P. Stupka, J. Lumin. 70, 364 (1996).

    Article  CAS  Google Scholar 

  37. P. D. J. Calcott, K. J. Nash, L. T. Canham, M. J. Kane and D. Brumhead, J. Lumin. 57, 257 (1993).

    Article  CAS  Google Scholar 

  38. G. Fishman, R. Romestain and J. C. Vial, J. Lumin. 57, 235 (1993).

    Article  CAS  Google Scholar 

  39. J. Diener, M. Ben-Chorin, D. Kovalev, S. Ganichev and F. Koch, Thin Solid Films 276, 116 (1996).

    Article  CAS  Google Scholar 

  40. J. Diener, D. Kovalev, G. Polisski, H. Heckler and F. Koch, Phys. Stat. Sol.(b) 214 R13 (1999).

    Google Scholar 

  41. for example G.E. Pikus and E.L. Ivchenko, Excitons: Modern Problems in Con-densed Matter Sciences, ed. by E.I. Rashba and M.D. Sturge, North-Holland, Amsterdam (1982).

    Google Scholar 

  42. F. Meier and B.P. Zakharchenya (Eds.), Optical Orientation, Modem Problems in Condensed Matter Sciences, North-Holland Publ. Co., Amsterdam (1984).

    Google Scholar 

  43. P. Lavallard and R.A. Suris, Solid State Commun. 25, 267 (1995).

    Article  Google Scholar 

  44. H. Koyama and P. Fauchet, Appl. Phys. Lett. 77, 2316 (2000).

    Article  CAS  Google Scholar 

  45. M. G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carrol, T.M. Jeddju, M.L. Stegerwald and L. Brus, Phys. Rev. Lett. 65, 1623 (1990).

    Article  CAS  Google Scholar 

  46. M. Chamarro, C. Gourdon and P. Lavallard, J. Lumin. 70, 222 (1996).

    Article  CAS  Google Scholar 

  47. D. Kovalev, M. Ben-Chorin, J. Diener, B. Averboukh, G. Polisski and F. Koch, Phys. Rev. Lett. 79, 119 (1997).

    Article  CAS  Google Scholar 

  48. D. Kovalev, M. Ben-Chorin, J. Diener, F. Koch, Al. Efros, M. Rosen, N. Gippius and S. Tikhodeev, Appl. Phys. Lett. 67, 1585 (1995).

    Article  CAS  Google Scholar 

  49. D. Kovalev, M. Ben-Chorin, J. Diener, F. Koch, A. Kux, Al. Efros, M. Rosen, N. Gippius and S. Tikhodeev, Thin Solid Films 276, 120 (1996).

    Article  CAS  Google Scholar 

  50. N. Gippius, S. Tikhodeev, Al. Efros, M. Rosen, D. Kovalev, M. Ben-Chorin, J. Diener and F. Koch, in Surface/Interface and Stress Effects in Electronic Material Nanostructures, Symposium. Mater. Res. Soc, Pittsburgh, PA, USA, 1996, p. 203.

    Google Scholar 

  51. L. D. Lanau, E. M. Lifshitz and L. P. Pitaevskii, Electrodynamics of Continuous Media, 2nd ed. (Pergamon, Oxford, 1984). Ellipsoids: E. C. Stoner, Phil. Mag. 36, 803 (1945).

    Google Scholar 

  52. A. I. Ekimov and Al. L. Efros, Phys. Stat. sol.(b)150, 627 (1988).

    Google Scholar 

  53. D. Kovalev, H. Heckler, B. Averboukh, M. Ben-Chorin, M. Schwarzkopff and F. Koch, Phys. Rev. B 57, 3741 (1998).

    Article  CAS  Google Scholar 

  54. V. Grivickas, J. Linnros and JA. Tellefsen, Thin Solid Films 255, 208 (1995).

    Article  CAS  Google Scholar 

  55. D. Kovalev, B. Averboukh, M. Ben-Chorin, F. Koch, Al. L. Efros and M. Rosen, Phys. Rev. Lett. 77, 2089 (1996).

    Article  CAS  Google Scholar 

  56. Al. L. Efros, M. Rosen, B. Averboukh, D. Kovalev, M. Ben-Chorin and F. Koch, Phys. Rev. B 56, 3875 (1997).

    Article  CAS  Google Scholar 

  57. M. Nirmal, B. Dabbousi, M. Bawendi, J. Macklin, J. Trautman, T. Harris and L. Brus, Nature 383, 802 (1996).

    Article  CAS  Google Scholar 

  58. Al. L. Efros and M. Rosen, Phys. Rev. Lett. 78, 1110 (1997).

    Article  CAS  Google Scholar 

  59. S. Empedocles and M. Bawendi, Science 278, 2114 (1997).

    Article  CAS  Google Scholar 

  60. R. Neuhauser,K. Shimizu,W. Woo, S. Empedocles and M. Bawendi, Phys. Rev. Lett. 85, 3301 (2000).

    Google Scholar 

  61. D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al. L. Efros and M. Rosen, Phys. Rev. B 61, 15841 (2000).

    Article  CAS  Google Scholar 

  62. M. E. Schmidt, S. A. Blanton, M. A. Hines and P. Guyot-Sionnest, Phys. Rev. B 53, 12629 (1996).

    Article  CAS  Google Scholar 

  63. J. Diener, D. Kovalev, G. Polisski and F. Koch, Appl. Phys. Lett. 74, 3350 (1999).

    Article  CAS  Google Scholar 

  64. J. Diener, Y. R. Shen, D. Kovalev, G. Polisski and F. Koch, Phys. Rev. B 58, 12629 (1998).

    Article  CAS  Google Scholar 

  65. Y. R. Shen The Principles of Nonlinear Optics, John Wiley \and Sons, Inc., 1984.

    Google Scholar 

  66. V. Lin, K. Motesharei, K. Dancil, M. Sailor and M. Ghadiri, Science 278, 840 (1997).

    Article  CAS  Google Scholar 

  67. Jun Gao, Ting Gao and M. Sailor, Appl. Phys. Lett. 77, 901 (2000).

    Article  CAS  Google Scholar 

  68. H. A. MacLeod, Thin Optical Filters, Adam Hilger, London (1969).

    Google Scholar 

  69. T. Kawazoe and Y. Masumoto, Phys. Rev. Lett. 77, 4942 (1996).

    Article  CAS  Google Scholar 

  70. Y. Masumoto, J. Lumin. 70, 386 (1996).

    Article  CAS  Google Scholar 

  71. D. Kovalev, H. Heckler, B. Averboukh, M. Ben-Chorin, M. Schwarzkopff and F. Koch, Phys. Rev. B 57, 3741 (1998).

    Article  CAS  Google Scholar 

  72. D. Kovalev, J. Diener, H. Heckler, G. Polisski, N. Künzner and F. Koch, Phys. Rev. B 61, 4485 (2000).

    Article  CAS  Google Scholar 

  73. G. Polisski, B. Averboukh, D. Kovalev and F. Koch, Appl. Phys. Lett. 70, 1116 (1997).

    Article  CAS  Google Scholar 

  74. S. Zangooie, R. Jansson and H. Arvin, J. Mater. Res 14, 4167 (1999).

    Article  CAS  Google Scholar 

  75. M. Kompan, J. Salonen, and I. Shabanov, Journal of Experimental and Theoretical Physics 90, 324 (2000).

    Article  CAS  Google Scholar 

  76. D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner and F. Koch, Phys. Stat. Sol.(a) 180, r8-rl 1 (2000).

    Google Scholar 

  77. D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko and F. Koch, Appl. Phys. Lett. 78, 916 (2001).

    Article  CAS  Google Scholar 

  78. H. A. Lorentz, Collected Papers, Martinus Nijhoff, The Hague 1936 (Vol. II, p. 79 ).

    Google Scholar 

  79. J. Pasternak and K. Vedam, Phys. Rev. B 3, 2567 (1971).

    Article  Google Scholar 

  80. H. D. Fuchs, M. Stutzmann, M. S. Brandt, M. Rosenbauer and J. Weber, Phys. Rev. B 48, 8172 (1993).

    Article  CAS  Google Scholar 

  81. V. Yu. Timoshenko, Th. Dittrich, V. Lysenko, M. G. Lisachenko and F. Koch, Phys. Rev. B 64, (2001) 85314

    Article  Google Scholar 

  82. E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, F. Koch, J. Appl. Phys. 90, (2001) 3529.

    Article  CAS  Google Scholar 

  83. J. Diener, N. Künzner, D. Kovalev, E. Gross, V. Yu. Timoshenko, G.Polisski and F. Koch, Appl. Phys. Lett. 78, (2001) 3887.

    CAS  Google Scholar 

  84. J. Diener, N. Künzner, D. Kovalev, E. Gross, F. Koch, J. Appl. Phys. 91, (2002) 6704.

    Article  CAS  Google Scholar 

  85. J. Diener, N. Künzner, D. Kovalev, E. Gross, F. Koch, M. Fujii, Phys. Stat. Sol. (a) 197, (2003) 582

    Article  CAS  Google Scholar 

  86. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G.Polisski, F. Koch and M. Fujii, Optics Letters 26 (2001) 1265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Diener, J., Künzner, N., Gross, E., Polisski, G., Kovalev, D. (2003). Porous Silicon as an Open Dielectric Nanostructure: an Ensemble of Aspheric Silicon Nanocrystals. In: Efros, A.L., Lockwood, D.J., Tsybeskov, L. (eds) Semiconductor Nanocrystals. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3677-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3677-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3402-4

  • Online ISBN: 978-1-4757-3677-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics