Infinite Sums, Diophantine Equations and Fermat’s Last Theorem

  • Henri Darmon
  • Claude Levesque
Part of the Developments in Mathematics book series (DEVM, volume 8)


Thanks to the results of Andrew Wiles, we know that Fermat’s last theorem is true. As a matter of fact, this result is a corollary of a major result of Wiles: every semi-stable elliptic curve over Q is modular. The modularity of elliptic curves over Q is the content of the Shimura-Taniyama conjecture, and in this lecture, we will restrain ourselves to explaining in elementary terms the meaning of this deep conjecture.


diophantine equation elliptic curve Fermat’s last theorem Fermat—Pell equation modular form Pythagoras’ equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [F]
    Frey, G.: Links between stable elliptic curves and certain Diophantine equations. Ann. Univ. Saray. 1 (1986), 1–40.Google Scholar
  2. [R]
    Ribet, K.: On modular representations of Gal(Q/Q)) arising from modular forms. Invent. Math. 100 (1990), 431–476.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [S]
    Serre, J.-P.: Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54 (1987), 179–230.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [T—W]
    Taylor, R.L., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Annals of Math. 141 (1995), 553–572.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [W]
    Wiles, A.: Modular elliptic curves and Fermat’s Last Theorem. Annals of Math. 141 (1995), 443–551.MathSciNetzbMATHCrossRefGoogle Scholar

Annoted bibliography

  1. 1.
    E.T. Bell, The Last Problem,2e édition, MAA Spectrum, Mathematical Association of America, Washington, DC, 1990, 326 pages.Google Scholar
  2. 2.
    H.M. Edwards, Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory,Graduate Texts in Math. 50, Springer—Verlag, New York, Berlin, Heidelberg, 1977, 410 pages.Google Scholar
  3. 3.
    C. Houzel, De Diophante à Fermat, in Pour la Science 220, January 1996, 88–96.Google Scholar
  4. 4.
    P. Ribenboim, 13 Lectures on Fermat’s Last Theorem,Springer—Verlag, New York, Berlin, Heidelberg, 1979, 302 pages.Google Scholar
  5. 5.
    L.C. Washington, Introduction to Cyclotomic Fields,Graduate Texts in Math. 83, Springer—Verlag, New York Berlin 1982, 389 pages.Google Scholar
  6. 1.
    N. Boston, A Taylor-made Plug for Wiles’ Proof, College Math. J. 26, No. 2, 1995, 100–105.Google Scholar
  7. 2.
    B. Cipra, “A Truly Remarkable Proof”, in What’s happening in the Mathematical Sciences, AMS Volume 2, 1994, 3–7.Google Scholar
  8. 3.
    J. Coates, Wiles Receives NAS Award in Mathematics, Notices of the AMS 43, 7, 1994, 760–763.Google Scholar
  9. 4.
    D.A. Cox, Introduction to Fermat’s Last Theorem, Amer. Math. Monthly 101, No. 1, 1994, 3–14.MathSciNetCrossRefGoogle Scholar
  10. 5.
    B. Edixoven, Le rôle de la conjecture de Serre dans la preuve du théorème de Fermat, Gazette des mathématiciens 66, Oct. 1995, 25–41. Addendum: idem 67, Jan. 1996, 19.Google Scholar
  11. 6.
    G. Faltings, The Proof of Fermat’s Last Theorem by R. Taylor and A. Wiles, Notices AMS 42, No. 7, 743–746.Google Scholar
  12. 7.
    G. Frey, Links Between Stable Elliptic Curves and Certain Diophantine Equations, Ann. Univ. Saray. 1, 1986, 1–40.Google Scholar
  13. 8.
    G. Frey, Links Between Elliptic Curves and Solutions of A—B = C, Indian Math. Soc. 51, 1987, 117–145.zbMATHGoogle Scholar
  14. 9.
    G. Frey, Links Between Solutions of A — B = C and Elliptic Curves, in Number Theory, Ulm, 1987, Proceedings, Lecture Notes in Math. 1380, Springer—Verlag, New York, 1989, 31–62.Google Scholar
  15. 10.
    D. Goldfeld, Beyond the last theorem,in The Sciences 1996 March/ April, 34–40.Google Scholar
  16. 11.
    C. Goldstein, Le théorème de Fermat, La Recherche 263, Mars 1994, 268–275.Google Scholar
  17. 12.
    C. Goldstein, Un théorème de Fermat et ses lecteurs, Presses Universitaires de Vincennes, 1995.Google Scholar
  18. 13.
    F.Q. Gouvêa, A Marvelous Proof, Amer. Math. Monthly 101, No. 3, 1994, 203–222.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 14.
    B. Hayes and K. Ribet, Fermat’s Last Theorem and Modern Arithmetic, Amer. Scientist 82, 1994, 144–156.Google Scholar
  20. 15.
    Y. Hellegouarch, Points d’ordre 2ph sur les courbes elliptiques,Acta Arith. 26, 1974/75, 253–263.Google Scholar
  21. 16.
    Y. Hellegouarch, Fermat enfin démontré, in Pour la Science 220, February 1996, 92–97.Google Scholar
  22. 17.
    S. Lang, Old and New Conjectured Diophantine Inequalities, Bull. AMS (New Series) 23, No. 1, 1990, 37–75.zbMATHCrossRefGoogle Scholar
  23. 18.
    B. Mazur, Number Theory as Gadfly, Amer. Math. Monthly 98, No. 7, 1991, 593–610.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 19.
    B. Mazur, Questions about Number, in New Directions in Mathematics,Cambridge Univ. Press, Cambridge, à paraître.Google Scholar
  25. 20.
    M.R. Murty, Fermat’s Last Theorem: an Outline, Gazette Sc. Math. Québec, Vol. XVI, No. 1, 1993, 4–13.Google Scholar
  26. 21.
    M.R. Murty, Reflections on Fermat’s Last Theorem, Elem. Math. 50 (1995) no. 1, 3–11.Google Scholar
  27. 22.
    J. Oesterlé, Nouvelles approches du “théorème” de Fermat“, Séminaire Bourbaki No. 694 (1987–88), Astérisque 161–162, 1988, 165–186.Google Scholar
  28. 23.
    K. Ribet, On Modular Representations of Gal(Q/Q) Arising from Modular Forms, Invent. Math. 100, 1990, 431–476.zbMATHGoogle Scholar
  29. 24.
    K. Ribet, From the Taniyama-Shimura Conjecture to Fermat’s Last Theorem,Ann. Fac. Sci. Toulouse (5) 11 (1990) no. 1, 116139.Google Scholar
  30. 25.
    K. Ribet, Wiles Proves Taniyama’s Conjecture; Fermat’s Last Theorem Follows, Notices Amer. Math. Soc. 40, 1993, 575–576.Google Scholar
  31. 26.
    K. Ribet, Galois Representations and Modular Forms, Bull. AMS (New Series) 32, No. 4, 1995, 375–402.zbMATHCrossRefGoogle Scholar
  32. 27.
    M. Rosen, New Results on the Arithmetic of Elliptic Curves, Gazette Sc. Math. Québec, Vol. XIV, No. 1, 1993, 30–43.Google Scholar
  33. 28.
    K. Rubin and A. Silverberg, A Report on Wiles’ Cambridge Lectures, Bull Amer. Math. Soc. (New Series) 31, 1994, 15–38.zbMATHCrossRefGoogle Scholar
  34. 29.
    R. Schoof, Proof of Taniyama-Weil Conjecture for Semi-stable Elliptic Curves over Q, Duke Math. J. 54, 1987, 179–230.Google Scholar
  35. 30.
    J-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54, 1987, 179–230.Google Scholar
  36. 31.
    J-P. Serre, Lettre à J.-F. Mestre, in Current Trends in Arithmetical Algebraic Geometry, ed. by K. Ribet, Contemporary Mathematics 67, AMS, 1987.Google Scholar
  37. 32.
    A. van der Poorten, Notes on Fermat’s Last Theorem, Canadian Math. Society Series of Monographs and Advanced Texts, Wiley Interscience, Jan. 1996.Google Scholar
  38. 33.
    A. Wiles, Modular Forms, Elliptic Curves, and Fermat’s Last Theorem, Proc. International Congress of Math., 1994, Birkhauser Verlag, Basel, 1995, 243–245.Google Scholar
  39. 1.
    J. Coates and S.T. Yau, Elliptic Curves and Modular Forms, in Proceedings of a conference in Hong Kong in 1993, International Press, Cambridge (MA) and Hong Kong, 1995.Google Scholar
  40. 2.
    H. Darmon, F. Diamond and R. Taylor, Fermat’s Last Theorem, Current Developments in Math. 1, International Press, 1995, 1154.Google Scholar
  41. 3.
    H. Darmon, The Shimura-Taniyama Conjecture, (d’après Wiles),(en Russe) Uspekhi Mat. Nauk 50 (1995), no. 3(303), pages 33–82. (English version in Russian Math Surveys).Google Scholar
  42. 4.
    V.K. Murty, ed., Elliptic Curves, Galois Representations and Modular Forms, CMS Conference Proc., AMS, Providence RI, 1996.Google Scholar
  43. 5.
    J. Oesterlé, Travaux de Wiles (et Taylor…), Partie II,Séminaire Bourbaki 1994–95, exposé No. 804, 20 pages.Google Scholar
  44. 6.
    K. Ribet, Galois Representations and Modular Forms, Bull. AMS (New Series) 32, 1995, No. 4, 375–402.zbMATHCrossRefGoogle Scholar
  45. 7.
    J-P. Serre, Travaux de Wiles (et Taylor…), Partie I,Séminaire Bourbaki 1994–95, exposé No. 803, 13 pages.Google Scholar
  46. 8.
    R.L. Taylor and A. Wiles, Ring Theoretic Properties of Certain Hecke Algebras, Annals of Math. 141, 1995, 553–572.zbMATHCrossRefGoogle Scholar
  47. 9.
    A. Wiles, Modular Elliptic Curves and Fermat’s Last Theorem, Annals of Math. 141, 1995, 443–551.CrossRefGoogle Scholar
  48. 1.
    Fermat Fest, Fermat’s Last Theorem. The Theorem and Its Proof: an Exploration of Issues and Ideas. Shown on the occasion of a “Fermat Fest” in San Francisco, CA, on July 28, 1993, Video, Selected Lectures in Mathematics,AMS, Providence, RI, 1994, (98 min.)Google Scholar
  49. 2.
    B. Mazur, Modular Elliptic Curves and Fermat’s Last Theorem,CMS meeting in Vancouver, August 1993, Video, Selected Lectures in Mathematics,AMS, Providence, RI, 1995, (50 min.)Google Scholar
  50. 3.
    K. Ribet, Modular Elliptic Curves and Fermat’s Last Theorem,Lecture given at George Washington U., Washington DC, 1993, Video, Selected Lectures in Mathematics,AMS, Providence, RI, 1993, (100 min.)Google Scholar
  51. 1.
    L.E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea Publ. Co., New York, 1971.Google Scholar
  52. 2.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,2nd edition, Graduate Texts in Math. 84, Springer—Verlag, New York, 1990, 389 pages.Google Scholar
  53. 3.
    W. Scharlau and H. Opolka, From Fermat to Minkowski. Lectures on the Theory of Numbers and Its Historical Development,Translated from the German by Walter K. Bühler and G. Cornell, Undergraduate Texts in Math., Springer—Verlag, New York-Berlin, 1985, 184 pages.Google Scholar
  54. 4.
    A. Weil, Fermat et l’équation de Pell, in Collected Papers, Vol. III, Springer—Verlag, New York, 1979, 413–420.Google Scholar
  55. 5.
    A. Weil, Number Theory. An Approach Through History. From Hammurapi to Legendre,Birkhauser Boston Inc., Boston, MA, 1984, 375 pages.Google Scholar
  56. 1.
    There is plenty of choice for the readers keen to learn more on elliptic curves.Google Scholar
  57. 2.
    H. Darmon, Wiles’ Theorem and the Arithmetic of Elliptic Curves, in Modular Forms and Fermat’s Last Theorem, Springer-Verlag, New York, 1997, 549–569.Google Scholar
  58. 3.
    D. Husemöller, Elliptic Curves,Graduate Texts in Math. 111, Springer-Verlag, New York, 1987, 350 pages.Google Scholar
  59. 4.
    H. Kisilevsky and M.R. Murty, Elliptic Curves and Related Topics,CRM Proceedings and Lecture Notes, AMS, 1994, 195 pages.Google Scholar
  60. 5.
    A.W. Knapp, Elliptic Curves,Mathematical Notes 40, Princeton U. Press, Princeton, NJ, 1992, 427 pages.Google Scholar
  61. 6.
    S. Lang, Elliptic Curves: Diophantine Analysis,Springer-Verlag, New York, 1978, 261 pages.Google Scholar
  62. 7.
    M.R. Murty and V.K. Murty, Lectures on Elliptic Curves,Lectures given at Andhra U., India, 1989, 92 pages.Google Scholar
  63. 8.
    M.R. Murty, Topics in Number Theory,Lectures given at the Mehta Research Institute, India, 1993, 117 pages.Google Scholar
  64. 9.
    J.H. Silverman and J. Tate, Rational Points on Elliptic Curves,Undergraduate Texts in Math., Springer-Verlag, New York, 1992, 281 pages.Google Scholar
  65. 10.
    J.H. Silverman, The Arithmetic of Elliptic Curves,Graduate Texts in Math. 106 Springer-Verlag, New York, 1992, 400 pages.Google Scholar
  66. 11.
    J.H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,Graduate Texts in Math., vol. 151, Springer-Verlag, New York, 1994, 525 pages.Google Scholar
  67. 12.
    J. Tate, Rational Points on Elliptic Curves,Philips Lectures, Haverford College, 1961, unpublished notes.Google Scholar
  68. 1.
    T. Apostol, Modular Functions and Dirichlet Series in Number Theory,Graduate Texts in Math. 41, Springer-Verlag, New York, 1976, 248 pages.Google Scholar
  69. 3.
    N. Koblitz, Introduction to Elliptic Curves and Modular Forms, 2 nd edition, Graduate Texts in Math. 97 Springer-Verlag, New York, 1993, 248 pages.Google Scholar
  70. 4.
    S. Lang, Introduction to Modular Forms,Springer-Verlag, New York, 1976, 261 pages.Google Scholar
  71. 5.
    T. Miyake, Modular Forms, Springer-Verlag, New York, 1989.zbMATHGoogle Scholar
  72. 6.
    M.R. Murty, Elliptic Curves and Modular Forms,Can. Math. Bull. 34 (3), 1991, 375–384.Google Scholar
  73. 7.
    A. Ogg, Modular Forms and Dirichlet Series,Benjamin, New York, 1969 Google Scholar
  74. 8.
    J-P. Serre, A Course in Arithmetic, 2n d edition, Graduate Texts in Math. 7, Springer-Verlag, New York, Berlin, Heidelberg, 1973, 115 pages.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Henri Darmon
    • 1
  • Claude Levesque
    • 2
  1. 1.CICMA, Mathematics Dept.McGILL UniversityMontréalCanada
  2. 2.CICMA, Dép. de Mathématiques et de StatistiqueUniversité LavalQuébecCanada

Personalised recommendations