Advertisement

New Applications of a Result of Galochkin on Linear Independence

  • Peter Bundschuh
Part of the Developments in Mathematics book series (DEVM, volume 8)

Abstract

We propose a slightly improved version of a criterion of Galochkin for the linear independence of the values of functions which are analytic in some neighborhood of the origin. Whereas Galochkin himself applied his criterion only to functions satisfying very special Mahler functional equations, we present new applications to solutions of certain Poincaré type functional equations. In particular, we propose a generalization of a recent irrationality result due to Duverney, and we give a new proof of the Tschakaloff-Skolem theorem on the linear independence of values, at appropriate points, of the Tschakaloff function T q which is intimately connected with the Jacobian theta function ϑ 3, in the usual notation.

Keywords

linear independence Poincaré functional equations q-functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Amou, M. Katsurada and K. Väänänen, “Arithmetical properties of the values of functions satisfying certain functional equations of Poincaré”, Acta Arith. 99 (2001) 389–407.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    J.-P. Bézivin, “Indépendance linéaire des valeurs des solutions transcendantes de certaines équations fonctionnelles”, Manuscripta Math. 61 (1988) 103–129.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    P. Bundschuh, “Ein Satz über ganze Funktionen und Irrationalitätsaussagen”, Invent. Math. 9 (1970) 175–184.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    D. Duverney, “Propriétés arithmétiques des solutions de certaines équations fonctionnelles de Poincaré”, J. Théor. Nombres Bordeaux 8 (1996) 443–447.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A.I. Galochkin, “Linear independence of values of functions satisfying Mahler functional equations”, Vestnik Moskov. Univ. Ser.I Mat. Mekh. 1997, 14–17, 72, Engl. transl.: Moscow Univ. Math. Bull. 52 (1997) 14–17.MathSciNetzbMATHGoogle Scholar
  6. [6]
    A.V. Lototsky, “Sur l’irrationalité d’un produit infini”, Mat. Sb. 12 (54) (1943) 262–272.MathSciNetGoogle Scholar
  7. [7]
    K. Mahler, Lectures on Transcendental Numbers, Springer, Berlin et al., LNM 546, 1976.Google Scholar
  8. [8]
    T. Matala-aho, “Remarks on the arithmetic properties of certain hypergeometric series of Gauss and Heine”, Acta Univ. Oulu. Ser. A Sci. Rerum Natur. 219 (1991) 1–112.MathSciNetGoogle Scholar
  9. Ku. Nishioka, Mahler Functions and Transcendence, Springer, Berlin et al., LNM 1631, 1996.Google Scholar
  10. [10]
    G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis II (4. Aufl.), Springer, Berlin et al., 1971.Google Scholar
  11. [ll]
    T. Skolem, “Some theorems on irrationality and linear independence”, in: Den lite Skand. Math. Kongr. Trondheim (1949) 77–98.Google Scholar
  12. [12]
    T. Stihl und R. Wallisser, “Zur Irrationalität und linearen Unabhängigkeit der Werte der Lösungen einer Funktionalgleichung von Poincaré”, J. Reine Angew. Math. 341 (1983) 98–110.MathSciNetzbMATHGoogle Scholar
  13. [13]
    L. Tschakaloff, “Arithmetische Eigenschaften der unendlichen ReiheI: Math. Ann. 80 (1921) 62–74Google Scholar
  14. L. Tschakaloff, “Arithmetische Eigenschaften der unendlichen Reihe II: Math. Ann. 84 (1921) 100–114.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [14]
    R. Wallisser, “Über die arithmetische Natur der Werte der Lösungen einer Funktionalgleichung von H. Poincaré”, Acta Arith. 25 (1973) 81–92.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Peter Bundschuh
    • 1
  1. 1.Mathematisches Institut der UniversitätKölnGermany

Personalised recommendations