Advertisement

Generalized Hypergeometric Series and the Symmetries of 3-j and 6-j Coefficients

  • K. Srinivasa Rao
  • H. D. Doebner
  • P. Nattermann
Part of the Developments in Mathematics book series (DEVM, volume 8)

Abstract

The invariance groups for a set of transformations of the non-terminating 3 F 2 (1) series, and for the set of Bailey transformations for terminating 4 F 3 (1) series are shown to be S 5 and S 6, respectively. Transformations which relate different basis states are used to discuss the symmetries of the 3-j and 6-j coefficients.

Keywords

angular momentum basis states generalized hypergeometric series group theory of transformations Saalschützian series symmetric groups symmetries of 3-j and 6-j coefficients transformation formulas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Thomae, J. Reine Angew. Math. 87 (1879) 26.zbMATHGoogle Scholar
  2. [2]
    K. Srinivasa Rao, H.-D. Doebner and P. Nattermann. of the 5th Wigner Symposium, Ed. by P. Kasperkovitz and D. Grau, World Scientific (1998) p. 97.Google Scholar
  3. [3]
    W.N. Bailey, it Generalized Hypergeometric Series, Cambridge Univ. Press. (1935).Google Scholar
  4. [4]
    W.A. Beyer, J.D. Louck and P.R. Stein, J. Math. Phys. 28 (1987) 497.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    K. Srinivasa Rao, J. Van der Jeugt, J. Raynal, R. Jagannathan and V. Rajeswari, J. Phys. A: Math. Gen. 25 (1992) 861.zbMATHCrossRefGoogle Scholar
  6. [6]
    J. Van der Jeugt and K. Srinivasa Rao, J. Math. Phys. (to appear).Google Scholar
  7. [7]
    G.H. Hardy, Ramanujan: Tweleve Lectures on subjects suggested by his life and work, Chelsea, New York (1940).Google Scholar
  8. [8]
    T. Regge, Nuo. Cim. 10 (1958) 544.zbMATHCrossRefGoogle Scholar
  9. [9]
    T. Regge, Nuo. Cim. 11 (1959) 116.CrossRefGoogle Scholar
  10. [10]
    M. Weber and A. Erdelyi, Am. Math. Mon. 59 (1952) 163.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    F.J.W. Whipple, Proc. London Math. Soc. 23 (1925) 104.Google Scholar
  12. [12]
    F.J. Budden, The Fascination of Groups, Cambridge Univ. Press (1972).Google Scholar
  13. [13]
    J. Raynal, J. Math. Phys. 19 (1978) 467.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    J. Raynal, J. Math. Phys. 20 (1979) 2398.Google Scholar
  15. [15]
    K. Srinivasa Rao, J. Phys. 11A (1978) L69.Google Scholar
  16. [16]
    G. Racah, Phys. Rev. 62 (1942) 438.CrossRefGoogle Scholar
  17. [17]
    B.M. Minton, J. Math. Phys. 11 (1970) 3061.MathSciNetCrossRefGoogle Scholar
  18. [18]
    K. Srinivasa Rao, T.S. Santhanam and K. Venkatesh, J. Math. Phys. 16 (1975) 1528.Google Scholar
  19. [19]
    K. Srinivasa Rao and K. Venkatesh, Group Theoretical methods in Physics, Ed. by R.T.Sharp and B.Kolman, Academic Press (1977) p. 649;Google Scholar
  20. K. Srinivasa Rao and K. Venkatesh, Group Theoretical methods in Physics, Ed. by P.Kramer and A.Rieckers, Lecture Notes in Phys., Springer - Verlag (1978) p. 501.Google Scholar
  21. [20]
    K. Srinivasa Rao and V. Rajeswari, Int. J. Theor. Phys. 24 (1985) 983.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [21]
    L.A. Lockwood, J. Math. Phys. 17 (1976) 1671; ibid 18 (1977) 45.Google Scholar
  23. [22]
    K. Venkatesh, J. Math. Phys. 19 (1978) 1973, 2060; ibid 21 (1980) 1555.Google Scholar
  24. [23]
    R. Askey’s Foreword in G. Gasper and M. Rahman, Basic Hypergeometric Series,Cambridge University Press, Cambridge (1990) p. xiii.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • K. Srinivasa Rao
    • 1
  • H. D. Doebner
    • 2
  • P. Nattermann
    • 2
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Arnold Sommerfeld Institut fur Mathematische Physik der TechnischeUniversität ClausthalClausthalGermany, F.R.

Personalised recommendations