A Penultimate Step toward Cubic Theta-Weyl Sums

  • Yoshinobu Nakai
Part of the Developments in Mathematics book series (DEVM, volume 8)


The attempt at interpreting the Weyl sums as finite theta series (theta-Weyl sums) has been successful only in the case of quadratic polynomials. In this paper we shall present basic ingredients for interpreting cubic Weyl sums as finite theta series, i.e. the cubic continued fraction expansion, the van der Corput reciprocal function, cubic reciprocal and parabolic transformations.


Weyl sum exponential sum cubic continued fraction expansion Diophantine approximation van der Corput reciprocal function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Fiedler, W. Jurkat and O. Körner, Asymptotic expansions of finite theta series, Acta Arith. 32 (1977), 129–146MathSciNetzbMATHGoogle Scholar
  2. [2]
    S. W. Graham and G. Kolesnik, Van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series 126, Cambridge Univ. Press, London, 1991Google Scholar
  3. [3]
    J.-I. Igusa, Lectures on forms of higher degree, Tata Institute of Fundamental Research Lectures on Mathematics and Physics 59, Tata Inst., Bombay, 1978Google Scholar
  4. [4]
    T. Kubota, On an analogy to the Poisson summation formula for generalised Fourier transformation, J. Reine angew. Math. 268/269 (1974), 180–189Google Scholar
  5. [5]
    Y. Kuribayashi, On pseudo-Fourier transform (in Japanese), Sûrikaiseki- kenkyusho Kôkyûroku 1039 (1998), 152–164Google Scholar
  6. [6]
    W. Maier, Transformation der kubischen Thetafunktionen, Math. Ann. 111 (1935), 183–196MathSciNetCrossRefGoogle Scholar
  7. [7-1]
    Y.-N. Nakai, On a 9-Weyl sum, Nagoya Math. J., 52 (1973), 163–172.MathSciNetzbMATHGoogle Scholar
  8. Y.-N. Nakai, On a 9-Weyl sum, Errata, the same J., 60 (1976), 217.MathSciNetzbMATHGoogle Scholar
  9. [7-2]
    Y.-N. Nakai, Weyl sums and the van der Corput method (in Japanese), Sûrikaisekikenkyusho Kôkyûroku 456 (1982), 2–18Google Scholar
  10. [7-3]
    Y.-N. Nakai, On Diophantine inequalities of real indefinite quadratic forms of additive type in four variables, Advanced Studies in Pure Mathematics 13 (1988), Investigations in Number Theory, 25–170Google Scholar
  11. [7-4]
    Y.-N. Nakai, Cubic continued fraction expansions I and II (in Japanese), Mem. Fac. Edu. Yamanashi Univ. 41–2 (1990), 4–6 (Cubic I)Google Scholar
  12. Y.-N. Nakai, Cubic continued fraction expansions I and II (in Japanese), ibid. 44–2 (1993), 1–3 (Cubic II)Google Scholar
  13. [7-5]
    Y.-N. Nakai, A strengthening of the conjecture that the functions invariant under Fourier transformation are quadratic polynomials, (in Japanese), Mem. Fac. Edu. Yamanashi Univ. 43–2 (1992), 1–3Google Scholar
  14. [7-6]
    Y.-N. Nakai, A candidate for cubic theta-Weyl sums (I) (in Japanese), Mem. Fac. Edu. Yamanashi Univ. 49–2 (1998), 1–4MathSciNetGoogle Scholar
  15. [7-7]
    Y.-N. Nakai, A candidate for cubic theta-Weyl sums (in Japanese), Sûrikaisekikenkyusho Kôkyûroku 1091 (1999), 298–307MathSciNetzbMATHGoogle Scholar
  16. [8]
    W. Raab, Kubische und biquadratische Thetafunktionen I und II, Sizungsber. Osterreich. Akad. Wiss. Mat-Natur. KI. 188 (1979), 47–77 and 231–246Google Scholar
  17. [9]
    T. Suzuki, Weil type representations and automorphic forms, Nagoya Math. J., 77 (1980), 145–166MathSciNetzbMATHGoogle Scholar
  18. [10]
    E. C. Titchmarsh, The theory of the Riemann zeta-function, Oxford Univ. Press, 1951; second ed., rev. by D.R. Heath-Brown, 1996Google Scholar
  19. [11-1]
    R. C. Vaughan, Some remarks on Weyl sums, Colloq. Math. Soc. Janos Bolyai, 34 (II), Topics in Classical Number Theory, Budapest (1987), 1585–1602Google Scholar
  20. [11-2]
    R. C. Vaughan, The Hardy-Littlewood method, second edition, Cambridge Tracts in Mathematics 125, Cambridge University Press, London 1997.Google Scholar
  21. [12]
    A. Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1963zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Yoshinobu Nakai
    • 1
  1. 1.Department of Mathematics, Faculty of EducationYamanashi UniversityKofu, YamanashiJapan

Personalised recommendations