Advertisement

On G-Functions and Padé Approximations

  • Makoto Nagata
Part of the Developments in Mathematics book series (DEVM, volume 8)

Abstract

We intend to introduce some state-of-the-art results on G-functions, which take algebraic values at some algebraic points, seen from the viewpoint of Padé approximations.

Keywords

G-function G-operator Padé approximation. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y. André, G-functions and Geometry, Max-Planck-Institut. (1989)Google Scholar
  2. [2]
    F. Baldassari, a lecture note, at Chiba University, (1996)Google Scholar
  3. [3]
    F. Beukers, Algebraic values of G-functions, J. reine angew. Math. 434, pp. 45–64 (1993)MathSciNetzbMATHGoogle Scholar
  4. [4]
    E. Bombieri, P. B. Cohen, Siegel’s lemma, Padé approximations and Jacobians, Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXV, pp. 155–178 (1997)MathSciNetGoogle Scholar
  5. [5]
    D. V. Chudnovsky, G. V. Chudnovsky, Applications of Padé approximations to Diophantine inequalities in values of G-functions, Lect. Notes in Math. 1135, pp. 9–51 Springer-Verlag (1985)Google Scholar
  6. [6]
    A. I. Galoéhkin, Estimates from below of polymomials in the values of analytic functions of a certain class, Math. USSR Sbornik 24, pp. 385–407 (1974)CrossRefGoogle Scholar
  7. [7]
    T. Honda, Algebraic differential equations, Symposia Mathematica XXIV, pp. 169–204 (1981)MathSciNetGoogle Scholar
  8. [8]
    M. Nagata, An estimation on the number of rational values related values of G functions,preprint (RIMS-1231)Google Scholar
  9. [9]
    M. Nagata, Sequences of differential systems, Proc. Amer. Math. Soc. 124, pp. 21–25 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    M. Nagata, A generalization of the sizes of differential equations and its applications to G-functions, Ann. Scoula Norm. Sup. Pisa Cl. Sci (4) XXX, pp. 465–497 (2001)MathSciNetGoogle Scholar
  11. [11]
    C. F. Osgood, Nearly Perfect Systems and Effective Generalizations of Shidlovski’s Theorem, J. Number Theory 13, pp. 515–540 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J. P. Serre, Lectures on the Mordell-Weil Theorem (3rd ed.), Vieweg (1997)Google Scholar
  13. [13]
    C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., Phys. Math. K1. nr. 1, (1929)Google Scholar
  14. [14]
    J. Wolfart, Werte hypergeometrischer Funktionen, Inv. Math. 92, pp. 187–216 (1988)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Makoto Nagata
    • 1
  1. 1.Research Institute for Mathematical SciencesKyoto UniversitySakyo-ku KyotoJapan

Personalised recommendations