Ramanujan’s Formula and Modular Forms

  • Shigeru Kanemitsu
  • Yoshio Tanigawa
  • Masami Yoshimoto
Part of the Developments in Mathematics book series (DEVM, volume 8)


In the theory of zeta-functions, which are defined wherever there are defined norms or substitutes thereof, the ingredients — modular relations, functional equations, incomplete gamma series, and the like — are placed like nodes on the woofs. Some of them are woven by warps as Hecke theory or Lavrik’s theory. The former connects the modular relation to the functional equation, thus making it possible to go to and from between the more orderly world of automorphic forms and the less orderly one of zeta-functions while the latter relates functional equations and incomplete gamma series in the same vein, the idea originating from Riemann. We have found a warp stitching all of these nodes-ingredients, enabling us to warp from one node to another as well as providing us with a guiding principle to locate the exact position and direction of research, a guiding thread to give a clear picture of the whole scene through opaque mist of complexity. We shall illustrate the principle by examples of various zeta-functions satisfying Hecke’s functional equation, i.e. the one with a single gamma factor, in which category many of the important zeta-functions are contained, notably, the Riemann zeta-, Dirichlet L-, Epstein zeta-, the automorphic zeta-functions, etc. In particular, we shall be concerned with the automorphic zeta-functions, the zeta functions arising from automorphic forms, evaluating their special values and obtaining incomplete gamma series.


functional equation Hecke theory incomplete gamma series modular relation Ramanujan’s formula Riemann-Siegel integral formula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Akiyama and Y. Tanigawa, Calculation of values of L-functions associated to elliptic curves, Math. Comp. 68 (1999), no. 227, 1201–1231.MathSciNetCrossRefGoogle Scholar
  2. [2]
    T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17 (1950), 147–157.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    T. M. Apostol, Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1952), 1–9.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    T. M. Apostol and A. Sklar, The approximate functional equation of Hecke’s Dirichlet series, Trans. Amer. Math. Soc. 86 (1957), 446–462.MathSciNetzbMATHGoogle Scholar
  5. [5]
    L. Atkin and J. Lehner, Hecke operators on I’0(m), Math. Ann. 185 (1970), 134–160.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    F.V. Atkinson, The Riemann zeta-function, Duke Math. J. 17 (1950), 63–38.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    F.V. Atkinson, The mean value of the Riemann zeta-function, Acta Math. 81 (1949), 353–376.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    K. Barner, Über die Werte der Ringklassen-L-Funktionen reelle-quadratischer Zahlkorper an naturlichen Argumentstellen, J. Number Theory 1 (1969), 2864.Google Scholar
  9. [9]
    P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373.MathSciNetGoogle Scholar
  10. [10]
    R. Bellman, An analog of an identity due to Wilton, Duke Math. J. 16 (1949), 539–545.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    B. C. Berndt, Generalized Dirichlet series and Hecke’s functional equation, Proc. Edinburgh Math. Soc. 15 (1967), 309–313.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series I, Trans. Amer. Math. Soc. 137 (1969), 345–359.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series II, Trans. Amer. Math. Soc. 137 (1969), 361–374.MathSciNetCrossRefGoogle Scholar
  14. [14]
    B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series III, Trans. Amer. Math. Soc. 146 (1969), 323–348.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series IV, Trans. Amer. Math. Soc. 149 (1970), 179–185.MathSciNetzbMATHGoogle Scholar
  16. [16]
    B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series V, Trans. Amer. Math. Soc. 160 (1971), 139–156.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series VI, Trans. Amer. Math. Soc. 160 (1971), 157–167.MathSciNetzbMATHGoogle Scholar
  18. [18]
    B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums, Trans. Amer. Math. Soc. 178 (1973), 495–508.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums, J. Reine Angew. Math. 272 (1975), 182–193.MathSciNetzbMATHGoogle Scholar
  20. [20]
    B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7 (1977), 147–189.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    B. C. Berndt, Analytic Eisenstein series, theta functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332–365.Google Scholar
  22. [22]
    B. C. Berndt, Ramanujan’s Notebooks Part I, Springer Verlag, New York, 1985.CrossRefGoogle Scholar
  23. [23]
    B. C. Berndt, Ramanujan’s Notebooks Part II, Springer Verlag, New York, 1989.CrossRefGoogle Scholar
  24. [24]
    B. C. Berndt, Ramanujan’s Notebooks Part IV, Springer Verlag, New York, 1994.CrossRefGoogle Scholar
  25. [25]
    B. C. Berndt and Ae Ja Yee, Ramanujan’s contributions to Eisenstein series, especially in his lost notebook, this volume.Google Scholar
  26. [26]
    S. Bochner, Some properties of modular relations. Ann. of Math. (2) 53 (1951), 332–363.MathSciNetzbMATHGoogle Scholar
  27. [27]
    S. Bochner and K. Chandrasekharan, On Riemann’s functional equation, Ann. of Math. 63 (1956), 336–360.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    M. Borwens and B. Borwens, Pi and the AGM, John Willey and Sons, Inc., New York, 1987.Google Scholar
  29. [29]
    H. H. Chan, On the equivalence of Ramanujan’s partition identities and a connection with the Rogers-Ramanujan continued fraction, J. Math. Anal. Appli. 198 (1996), 111–120.zbMATHCrossRefGoogle Scholar
  30. [30]
    H. H. Chan and K. S. Chua, Representations of integers as sums of 32 squares, submitted for publication.Google Scholar
  31. [31]
    A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums in arbitrary dimensions, J. Math. Phys. 16 (1975), 1457–1460.MathSciNetCrossRefGoogle Scholar
  32. [32]
    K. Chandrasekharan and S. Mandelbrot, On Riemann’s functional equation, Ann. of Math. 66 (1957), 285–296.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    K. Chandrasekharan and Raghavan Narasimhan, Hecke’s functional equation and arithmetical identities. Ann. of Math. (2) 74 (1961), 1–23.MathSciNetzbMATHGoogle Scholar
  34. [34]
    K. Chandrasekharan and Raghavan Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math. (2) 76 (1962), 93–136.MathSciNetzbMATHGoogle Scholar
  35. [35]
    S. Chowla and A. Selberg, On Epstein’s zeta-function (I), Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374 = Collected Papers of Atle Selberg, Vol. I, 367–370, Springer, 1989.Google Scholar
  36. [36]
    J. B. Conrey and D. W. Farmer, An extension of Hecke’s converse theorem, International Math. Research Notices 9 (1995), 445–463.MathSciNetCrossRefGoogle Scholar
  37. [37]
    K. Doi and T. Miyake, Number Theory and A’utomorphic Forms, Kinokuniya Pub. Tokyo, (in Japanese ) 1976.zbMATHGoogle Scholar
  38. [38]
    H. M. Edwards, Riemann’s Zeta-function, Academic Press, New York-London, 1974.Google Scholar
  39. [39]
    S. Egami, A x-analogue of a formula of Ramanujan for ç(1/2), Acta Arith. 69 (1995), 189–191.MathSciNetzbMATHGoogle Scholar
  40. [40]
    M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    P. Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Ann. 56 (1903), 615–644=Arch. Math. u. Phys. 7 (1902), 614–644; II, ibid. 63 (1907), 205216.Google Scholar
  42. [42]
    A. Erdélyi, Higher Transcendental Functions I, McGraw-Hill, New York, 1953.zbMATHGoogle Scholar
  43. [43]
    A. Erdélyi, Higher Transcendental Functions II, McGraw-Hill, New York, 1953.zbMATHGoogle Scholar
  44. [44]
    A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricorni, Tables of integral transforms. Vol. I. McGraw-Hill Book Company, Inc., New York-TorontoLondon, 1954.Google Scholar
  45. [45]
    L. Euler, Exercitationes analyticae, Novi Comment. Acad. Sci. Petropol 17 (1772), 173–204 = Opera omnia, Ser. I, Vol. 15, Leipzig (1927), 131–167.Google Scholar
  46. [46]
    S. Ferminger, Zéros des fonction L de courbres elliptiques, Experimental Math., 1 (1992), 167–173.CrossRefGoogle Scholar
  47. [47]
    A. O. Gel’fond, Some functional equations implied by equations of Riemann type, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 469–474.MathSciNetzbMATHGoogle Scholar
  48. [48]
    M. L. Glasser and I. J. Zucker, Lattice sums, Theoretical Chemistry: Advances and Perspectives, Vol. 5, ed. by D. Henderson, Academic Press 1980, 67–139.Google Scholar
  49. [49]
    D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat and other curves at the center of the critical strip, J. of Number Theory 11 (1979), 305–320.MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    L. Goldstein, Zeta functions and Eichler integrals, Acta Arith. 36 (1980), 229256.Google Scholar
  51. [51]
    L. J. Goldstein and P. de la Torre, On the transformation of log ?AT), Duke Math. J. 41 (1974). 291–297.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the fourth Russian edition. Fifth edition. Translation edited and with a preface by Alan Jeffrey. Academic Press, Inc., Boston, MA, 1994.Google Scholar
  53. [53]
    E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1970), 9–13.Google Scholar
  54. [54]
    E. Grosswald, Comments on some formulae of Ramanujan. Acta Arith. 21 (1972), 25–34.MathSciNetzbMATHGoogle Scholar
  55. [55]
    E. Grosswald, Relations between the values at integral arguments of Dirichlet series that satisfy functional equations. Proc. Sympos. Pure Math., Vol. 24, Amer. Math. Soc., Providence, 1973, 111–122.Google Scholar
  56. [56]
    A. P. Guinand, Functional equations and self-reciprocal functions connected with Lambert series. Quart. J. Math. Oxford Ser. 15 (1944), 11–23.MathSciNetzbMATHCrossRefGoogle Scholar
  57. [57]
    A. P. Guinand, Some rapidly convergent series for the Riemann -function. Quart. J. Math. Oxford Ser. (2) 6 (1955), 156–160.MathSciNetzbMATHCrossRefGoogle Scholar
  58. [58]
    A. Guthman, The Riemann-Siegel integral formula for Dirichlet series associated to cusp forms, in Analytic and Elementary Number Theory, Vienna, 1996, 53–69.Google Scholar
  59. [59]
    A. Guthman, Die Riemann-Siegel-Integralformel für die Mellintransformation von Spitzenformen. (German) Arch. Math. (Basel) 69 (1997), 391–402.CrossRefGoogle Scholar
  60. [60]
    A. Guthman, New integral representations for the square of the Riemann zeta-function. Acta Arith. 82 (1997), 309–330.MathSciNetGoogle Scholar
  61. [61]
    A. Guthman, Asymptotic expansions for Dirichlet series associated to cusp forms. Publ. Inst. Math. (Beograd) (N.S.) 65 (79) (1999), 69–96.Google Scholar
  62. [62]
    H. Hamburger, Über die Riemannsche Funktionalgleichung der (-Funktion I,II,III, Math. Zeit. 10 (1921), 240–254; 11 (1922), 224–245; 13 (1922) 283–311.MathSciNetzbMATHCrossRefGoogle Scholar
  63. [63]
    G. H. Hardy and J. E. Littlewood, The zeros of Riemann’s zeta-function on the critical line, Math. Zeit. 10 (1921), 283–317.MathSciNetzbMATHCrossRefGoogle Scholar
  64. [64]
    E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 11 (1936),664–699.Google Scholar
  65. [65]
    E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Edwards, Ann Arbor, 1938.Google Scholar
  66. [66]
    E. Hecke, Herleitung des Euler-Produkts der Zetafuncktion und einiger L-Reihen aus ihr Funktionalgleichung, Math. Ann. 119 (1944), 266–287.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    T. Hiramatsu, Y. Mimura and I. Takada, Dedekind sum and automorphic forms, RIMS Kokyuroku 572 (1985), 151–175 (in Japanese).Google Scholar
  68. [68]
    J-I. Igusa, Lectures on forms of higher degree, Tata Institute of Fundamental Research, Bombay, 1978.zbMATHGoogle Scholar
  69. [69]
    A. Ivie, The Riemann Zeta-Function, John Wiley and Sons, New York, 1985.Google Scholar
  70. [70]
    M. Jutila, On the approximate functional equation for (2(s) and other Dirichlet series, Quart. J. Math. Oxford(2) 37 (1986), 193–209.MathSciNetzbMATHGoogle Scholar
  71. [71]
    S. Kanemitsu, M. Katsurada and M. Yoshimoto, On the Hurwitz-Lerch zeta function, Aeq. Math. 59 (2000), 1–19.MathSciNetzbMATHCrossRefGoogle Scholar
  72. [72]
    S. Kanemitsu, H. Kumagai and M. Yoshimoto, Sums involving the Hurwitz zeta function, The Ramanujan J. 5 (2001), 5–19.MathSciNetzbMATHCrossRefGoogle Scholar
  73. [73]
    S. Kanemitsu, H. Kumagai and M. Yoshimoto, On rapidly convergent series expressions for zeta-and L-values, and log sine integrals, The Ramanujan J. 5 (2001), 91–104.MathSciNetzbMATHCrossRefGoogle Scholar
  74. [74]
    S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On zeta-and L-function values at special rational arguments via the modular relation, Proc. Int. Conf. SSFA, Vol. I (2001), 21–42.Google Scholar
  75. [75]
    S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On the values of the Riemann zeta-function at rational arguments, Hardy Ramanujan J. 24 (2001), 10–18.MathSciNetzbMATHGoogle Scholar
  76. [76]
    S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On rapidly convergent series for Dirichlet L-function values via the modular relation, Proc. of the International Conference on Number Theory and Discrete Mathematics in honour of Srinivasa Ramanujan, 114–133, Hindustan Book Agency, 2002.Google Scholar
  77. [77]
    S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On rapidly convergent series for the Riemann zeta-values via the modular relation, preprint.Google Scholar
  78. [78]
    S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On multiple Hurwitz zeta-function values at rational arguments, preprint.Google Scholar
  79. [79]
    M. Katsurada, Rapidly convergent series representations for ((2n+1) and their X-analogue, Acta Arith. 90 (1999), 79–89.MathSciNetzbMATHGoogle Scholar
  80. [80]
    M. Katsurada, On an asymptotic formula of Ramanujan for a certain theta-type series, Acta Arith. 97 (2001), 157–172.MathSciNetzbMATHCrossRefGoogle Scholar
  81. [81]
    D. Klusch, On Entry 8 of Chapter 15 of Ramanujan’s Notebook II, Acta Arith. 58 (1991), 59–64.MathSciNetzbMATHGoogle Scholar
  82. [82]
    M. Knopp, Hamberger’s theorem on ç(s) and the abundance principle for Dirichlet series with functional equations, Number Theory (ed. by R. P. Barn-bah et al.), 201–216, Hindustan Book Agency, New Delhi, 2000.Google Scholar
  83. [83]
    N. Koshlyakov, Investigation of some questions of analytic theory of the rational and quadratic fields, I-III (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 18 (1954), 113–144, 213–260, 307–326; Errata 19 (1955), 271.Google Scholar
  84. [84]
    N. Kurokawa, 100 years of zeta regularized product, The 39th algebra symposium (1994), 153–166 (in Japanese).Google Scholar
  85. [85]
    R. Kuz’min, Contributions to the theory of a class of Dirichlet series (Russian), Izv. Akad. Nauk SSSR, Ser. Math. Nat. Sci. 7 (1930), 115–124.Google Scholar
  86. [86]
    R. Kuz’min, On the roots of Dirichlet series, Izv. Akad. Nauk SSSR, Ser. Math. Nat. Sci. 7 (1934), 1471–1491.Google Scholar
  87. [87]
    S. Lang, Introduction to Modular Forms, Springer, Berlin-New York, 1976.zbMATHGoogle Scholar
  88. [88]
    A. F. Lavrik, Approximate functional equations of Dirichlet functions (Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1968), 134–185; English translation in Math. USSR-Izv. 2 (1968), 129–179.CrossRefGoogle Scholar
  89. [89]
    A. F. Lavrik, An approximate functional equation for the Dirichlet L-function, Trudy Moskov Mat. Obsc. 18 (1968), 91–104 =Trans. Moscow Math. Soc. 18 (1968), 101–115.MathSciNetzbMATHGoogle Scholar
  90. [90]
    A. F. Lavrik, The principle of the theory of nonstandard functional equation for Dirichlet functions, consequences and applications of it, Trudy Mat. Inst. Steklov 132 (1973), 70–76= Proc. Steklov Int. Math. 132 (1973), 77–85.MathSciNetGoogle Scholar
  91. [91]
    A. F. Lavrik, Functional equations with a parameter for zeta-functions (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 501–521; English translation in Math. USSR-Izv. 36 (1991), 519–540.MathSciNetzbMATHCrossRefGoogle Scholar
  92. [92]
    Ju. V. Linnik, An asymptotic formula in an additive problem of Hardy and Littlewood, lzv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 629–706; English transl., Amer. Math. Soc. Transi. (2) 46 (1965), 65–148.Google Scholar
  93. Ju. V. Linnik, All large numbers are sum of a prime and two squares (A problem of Hardy and Littlewood) II Mat. Sb. 53 (1961), 3–38; English transi., Amer. Math. Soc. Transi. (2) 37 (1964), 197–240.Google Scholar
  94. [94]
    J. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), no. 6, 7–71.MathSciNetzbMATHCrossRefGoogle Scholar
  95. [95]
    J. Manin, Parabolic points and zeta functions of modular curves, Math. USSR Izvestia 6 (1972), 19–64.MathSciNetCrossRefGoogle Scholar
  96. [96]
    J. Manin, Periods of parabolic forms and p-adic Hecke series, Math. USSR Sbornik 21 (1973), 371–393.CrossRefGoogle Scholar
  97. [97]
    B. Mazur and H.P.F. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.MathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    Y. Motohashi, Lectures on the Riemann-Siegel Formula, Ulam Seminar, Dept. of Math., Univ. of Colorado, Boulder 1987.Google Scholar
  99. [99]
    A. P. Ogg, Modular Forms and Dirichlet Series, Benjamin, New York, 1969.zbMATHGoogle Scholar
  100. [100]
    S. Raghavan, On certain identities due to Ramanujan, Quart. J. Math. Oxford (2) 37 (1986), 221–229.MathSciNetzbMATHCrossRefGoogle Scholar
  101. [101]
    R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, 1977.zbMATHCrossRefGoogle Scholar
  102. [102]
    M. J. Razar, Values of Dirichlet series at integers in the critical strip, Modular Functions of One Variable VI, Bonn 1976, Lecture Notes in Math. 627, Springer-Verlag, Berlin (1977), 1–10.Google Scholar
  103. [103]
    B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. der Berliner Akad. (1859), 671–680= Ges. Math. Werke, 145–153, Dover, New York, 1953.Google Scholar
  104. [104]
    F. Sato, Searching for the origin of prehomogeneous vector spaces, at annual meeting of the Math. Soc. Japan 1992 (in Japanese).Google Scholar
  105. [105]
    A. Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967)86–110= Collected Papers of Atle Selberg, Vol. I, 521–545, Springer, 1989.Google Scholar
  106. [106]
    J. P. Serre, A course in Arithmetic, Springer-Verlag, New York, 1973.Google Scholar
  107. [107]
    G. Shimura, Sur les intégral attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291–311.MathSciNetzbMATHCrossRefGoogle Scholar
  108. [108]
    G. Shimura, Introduction to the Theory of Automorphic Functions, Princeton University Press, Princeton, N. J. (1971).Google Scholar
  109. [109]
    C. L. Siegel, Über Riemanns Nachlaß zur analytischen Zahlentheorie, Quellen u. Studien zur Geschichte der Math., Astr. Phys., 2 (1932), 45–80 =Ges. Abh., I, 275–310, Springer, Berlin-New York 1966.Google Scholar
  110. [110]
    C. L. Siegel, Contribution to the theory of the Dirichlet L-series and the Epstein zeta-functions, Ann. of Math. 44 (1943), 143–172 = Ges. Abh., II, 360–389, Springer, Berlin-New York 1966.Google Scholar
  111. [111]
    C. L. Siegel, A simple proof of i (-1/r) = 7 7 (r) T/i, Mathematika 1 (1954), p.4 =Ges. Abh., III, 188, Springer, Berlin-New York 1966.Google Scholar
  112. [112]
    J. R. Smart, On the values of thè Epstein zeta function, Galsgow Math. J. 14 (1973), 1–12.MathSciNetzbMATHCrossRefGoogle Scholar
  113. [113]
    H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.zbMATHGoogle Scholar
  114. [114]
    H. M. Stark, L-functions and character sums for quadratic forms (I) and (II), Acta Arith. 14 (1968), 35–50, and ibid. 15 (1969), 307–317.zbMATHGoogle Scholar
  115. [115]
    A. Terras, Bessel series expansion of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486.MathSciNetzbMATHCrossRefGoogle Scholar
  116. [116]
    A. Terras, Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function, Acta Arith. 29 (1976), 181–189.MathSciNetzbMATHGoogle Scholar
  117. [117]
    A. Terras, The Fourier expansion of Epstein’s zeta function for totally real algebraic number fields and some consequences for Dedekind’s zeta function, Acta Arith. 30 (1976), 187–197.MathSciNetzbMATHGoogle Scholar
  118. [118]
    A. Terras, Applications of special functions for the general linear group to number theory, Séminaire Delange-Pisot-Poitou, 18e année, 1976/77, No. 23, 1–16.Google Scholar
  119. [119]
    A. Terras, The Fourier expansion of Epstein’s zeta function over an algebraic number field and its consequences for algebraic number theory. Acta Arith. 32 (1977), 37–53.MathSciNetzbMATHGoogle Scholar
  120. [120]
    A. Terras, A relation between ç(s) and ç(s — 1) for any algebraic number field, in Algebraic Number Fields A. Frohlich (Ed.), Academic Press, N.Y., 1977, 475–483.Google Scholar
  121. [121]
    A. Terras, The minima of quadratic forms and the behavior of Epstein and Dedekind zeta functions, J. Number Theory 12 (1980), 258–272.MathSciNetzbMATHCrossRefGoogle Scholar
  122. [122]
    A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, II, Springer Verlag, New York-Berlin-Heidelberg, 1985.zbMATHCrossRefGoogle Scholar
  123. [123]
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, (second edition revised by D. R. Heath-Brown ), OUP 1986.Google Scholar
  124. [124]
    M. Toyoizumi, Ramanujan’s formulae for certain Dirichlet series. Comment. Math. Univ. St. Paul. 30 (1981), 149–173; 31 (1982), 87.MathSciNetGoogle Scholar
  125. [125]
    A. Weil, Sur une formule classique, J. Math. Soc. Japan 20 (1968), 400–402 = Coll. Papers, III, 198–200, Springer, New York, 1980.Google Scholar
  126. [126]
    A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 = Coll. Papers, III, 165–172, Springer, New York, 1979.Google Scholar
  127. [127]
    A. Weil, Remarks on Hecke’s lemma and its use, Algebraic Number Theory, Intern. Symposium Kyoto 1976, S. Iyanaga (ed.), Jap. Soc. for the Promotion of Science 1977, pp. 267–274=Coll. Papers III, 405–412, Springer, New York, 1980.Google Scholar
  128. [128]
    J. R. Wilton, A proof of Burnside’s formula for log I’(x + 1) and certain allied properties of Riemann’s (-function. Messenger Math. 52 (1922/1923), 90–93.Google Scholar
  129. [129]
    D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic forms, Modular Functions of One Variable VI, Bonn 1976, Lecture Notes in Math. 627, Springer-Verlag, Berlin (1977), 105–169.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Shigeru Kanemitsu
    • 1
  • Yoshio Tanigawa
    • 2
  • Masami Yoshimoto
    • 2
  1. 1.Graduate School of Advanced TechnologyUniversity of KinkiIizuka, FukuokaJapan
  2. 2.Graduate School of MathematicsNagoya UniversityNagoyaJapan

Personalised recommendations