# Ramanujan’s Formula and Modular Forms

• Shigeru Kanemitsu
• Yoshio Tanigawa
• Masami Yoshimoto
Chapter
Part of the Developments in Mathematics book series (DEVM, volume 8)

## Abstract

In the theory of zeta-functions, which are defined wherever there are defined norms or substitutes thereof, the ingredients — modular relations, functional equations, incomplete gamma series, and the like — are placed like nodes on the woofs. Some of them are woven by warps as Hecke theory or Lavrik’s theory. The former connects the modular relation to the functional equation, thus making it possible to go to and from between the more orderly world of automorphic forms and the less orderly one of zeta-functions while the latter relates functional equations and incomplete gamma series in the same vein, the idea originating from Riemann. We have found a warp stitching all of these nodes-ingredients, enabling us to warp from one node to another as well as providing us with a guiding principle to locate the exact position and direction of research, a guiding thread to give a clear picture of the whole scene through opaque mist of complexity. We shall illustrate the principle by examples of various zeta-functions satisfying Hecke’s functional equation, i.e. the one with a single gamma factor, in which category many of the important zeta-functions are contained, notably, the Riemann zeta-, Dirichlet L-, Epstein zeta-, the automorphic zeta-functions, etc. In particular, we shall be concerned with the automorphic zeta-functions, the zeta functions arising from automorphic forms, evaluating their special values and obtaining incomplete gamma series.

## Keywords

functional equation Hecke theory incomplete gamma series modular relation Ramanujan’s formula Riemann-Siegel integral formula

## References

1. [1]
S. Akiyama and Y. Tanigawa, Calculation of values of L-functions associated to elliptic curves, Math. Comp. 68 (1999), no. 227, 1201–1231.
2. [2]
T. M. Apostol, Generalized Dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17 (1950), 147–157.
3. [3]
T. M. Apostol, Theorems on generalized Dedekind sums, Pacific J. Math. 2 (1952), 1–9.
4. [4]
T. M. Apostol and A. Sklar, The approximate functional equation of Hecke’s Dirichlet series, Trans. Amer. Math. Soc. 86 (1957), 446–462.
5. [5]
L. Atkin and J. Lehner, Hecke operators on I’0(m), Math. Ann. 185 (1970), 134–160.
6. [6]
F.V. Atkinson, The Riemann zeta-function, Duke Math. J. 17 (1950), 63–38.
7. [7]
F.V. Atkinson, The mean value of the Riemann zeta-function, Acta Math. 81 (1949), 353–376.
8. [8]
K. Barner, Über die Werte der Ringklassen-L-Funktionen reelle-quadratischer Zahlkorper an naturlichen Argumentstellen, J. Number Theory 1 (1969), 2864.Google Scholar
9. [9]
P. T. Bateman and E. Grosswald, On Epstein’s zeta function, Acta Arith. 9 (1964), 365–373.
10. [10]
R. Bellman, An analog of an identity due to Wilton, Duke Math. J. 16 (1949), 539–545.
11. [11]
B. C. Berndt, Generalized Dirichlet series and Hecke’s functional equation, Proc. Edinburgh Math. Soc. 15 (1967), 309–313.
12. [12]
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series I, Trans. Amer. Math. Soc. 137 (1969), 345–359.
13. [13]
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series II, Trans. Amer. Math. Soc. 137 (1969), 361–374.
14. [14]
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series III, Trans. Amer. Math. Soc. 146 (1969), 323–348.
15. [15]
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series IV, Trans. Amer. Math. Soc. 149 (1970), 179–185.
16. [16]
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series V, Trans. Amer. Math. Soc. 160 (1971), 139–156.
17. [17]
B. C. Berndt, Identities involving the coefficients of a class of Dirichlet series VI, Trans. Amer. Math. Soc. 160 (1971), 157–167.
18. [18]
B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums, Trans. Amer. Math. Soc. 178 (1973), 495–508.
19. [19]
B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums, J. Reine Angew. Math. 272 (1975), 182–193.
20. [20]
B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mountain J. Math. 7 (1977), 147–189.
21. [21]
B. C. Berndt, Analytic Eisenstein series, theta functions, and series relations in the spirit of Ramanujan, J. Reine Angew. Math. 303/304 (1978), 332–365.Google Scholar
22. [22]
B. C. Berndt, Ramanujan’s Notebooks Part I, Springer Verlag, New York, 1985.
23. [23]
B. C. Berndt, Ramanujan’s Notebooks Part II, Springer Verlag, New York, 1989.
24. [24]
B. C. Berndt, Ramanujan’s Notebooks Part IV, Springer Verlag, New York, 1994.
25. [25]
B. C. Berndt and Ae Ja Yee, Ramanujan’s contributions to Eisenstein series, especially in his lost notebook, this volume.Google Scholar
26. [26]
S. Bochner, Some properties of modular relations. Ann. of Math. (2) 53 (1951), 332–363.
27. [27]
S. Bochner and K. Chandrasekharan, On Riemann’s functional equation, Ann. of Math. 63 (1956), 336–360.
28. [28]
M. Borwens and B. Borwens, Pi and the AGM, John Willey and Sons, Inc., New York, 1987.Google Scholar
29. [29]
H. H. Chan, On the equivalence of Ramanujan’s partition identities and a connection with the Rogers-Ramanujan continued fraction, J. Math. Anal. Appli. 198 (1996), 111–120.
30. [30]
H. H. Chan and K. S. Chua, Representations of integers as sums of 32 squares, submitted for publication.Google Scholar
31. [31]
A. N. Chaba and R. K. Pathria, Evaluation of a class of lattice sums in arbitrary dimensions, J. Math. Phys. 16 (1975), 1457–1460.
32. [32]
K. Chandrasekharan and S. Mandelbrot, On Riemann’s functional equation, Ann. of Math. 66 (1957), 285–296.
33. [33]
K. Chandrasekharan and Raghavan Narasimhan, Hecke’s functional equation and arithmetical identities. Ann. of Math. (2) 74 (1961), 1–23.
34. [34]
K. Chandrasekharan and Raghavan Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions. Ann. of Math. (2) 76 (1962), 93–136.
35. [35]
S. Chowla and A. Selberg, On Epstein’s zeta-function (I), Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 371–374 = Collected Papers of Atle Selberg, Vol. I, 367–370, Springer, 1989.Google Scholar
36. [36]
J. B. Conrey and D. W. Farmer, An extension of Hecke’s converse theorem, International Math. Research Notices 9 (1995), 445–463.
37. [37]
K. Doi and T. Miyake, Number Theory and A’utomorphic Forms, Kinokuniya Pub. Tokyo, (in Japanese ) 1976.
38. [38]
39. [39]
S. Egami, A x-analogue of a formula of Ramanujan for ç(1/2), Acta Arith. 69 (1995), 189–191.
40. [40]
M. Eichler, Eine Verallgemeinerung der Abelschen Integrale, Math. Z. 67 (1957), 267–298.
41. [41]
P. Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Ann. 56 (1903), 615–644=Arch. Math. u. Phys. 7 (1902), 614–644; II, ibid. 63 (1907), 205216.Google Scholar
42. [42]
A. Erdélyi, Higher Transcendental Functions I, McGraw-Hill, New York, 1953.
43. [43]
A. Erdélyi, Higher Transcendental Functions II, McGraw-Hill, New York, 1953.
44. [44]
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricorni, Tables of integral transforms. Vol. I. McGraw-Hill Book Company, Inc., New York-TorontoLondon, 1954.Google Scholar
45. [45]
L. Euler, Exercitationes analyticae, Novi Comment. Acad. Sci. Petropol 17 (1772), 173–204 = Opera omnia, Ser. I, Vol. 15, Leipzig (1927), 131–167.Google Scholar
46. [46]
S. Ferminger, Zéros des fonction L de courbres elliptiques, Experimental Math., 1 (1992), 167–173.
47. [47]
A. O. Gel’fond, Some functional equations implied by equations of Riemann type, Izv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 469–474.
48. [48]
M. L. Glasser and I. J. Zucker, Lattice sums, Theoretical Chemistry: Advances and Perspectives, Vol. 5, ed. by D. Henderson, Academic Press 1980, 67–139.Google Scholar
49. [49]
D. Goldfeld and C. Viola, Mean values of L-functions associated to elliptic, Fermat and other curves at the center of the critical strip, J. of Number Theory 11 (1979), 305–320.
50. [50]
L. Goldstein, Zeta functions and Eichler integrals, Acta Arith. 36 (1980), 229256.Google Scholar
51. [51]
L. J. Goldstein and P. de la Torre, On the transformation of log ?AT), Duke Math. J. 41 (1974). 291–297.
52. [52]
I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products. Translated from the fourth Russian edition. Fifth edition. Translation edited and with a preface by Alan Jeffrey. Academic Press, Inc., Boston, MA, 1994.Google Scholar
53. [53]
E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1970), 9–13.Google Scholar
54. [54]
E. Grosswald, Comments on some formulae of Ramanujan. Acta Arith. 21 (1972), 25–34.
55. [55]
E. Grosswald, Relations between the values at integral arguments of Dirichlet series that satisfy functional equations. Proc. Sympos. Pure Math., Vol. 24, Amer. Math. Soc., Providence, 1973, 111–122.Google Scholar
56. [56]
A. P. Guinand, Functional equations and self-reciprocal functions connected with Lambert series. Quart. J. Math. Oxford Ser. 15 (1944), 11–23.
57. [57]
A. P. Guinand, Some rapidly convergent series for the Riemann -function. Quart. J. Math. Oxford Ser. (2) 6 (1955), 156–160.
58. [58]
A. Guthman, The Riemann-Siegel integral formula for Dirichlet series associated to cusp forms, in Analytic and Elementary Number Theory, Vienna, 1996, 53–69.Google Scholar
59. [59]
A. Guthman, Die Riemann-Siegel-Integralformel für die Mellintransformation von Spitzenformen. (German) Arch. Math. (Basel) 69 (1997), 391–402.
60. [60]
A. Guthman, New integral representations for the square of the Riemann zeta-function. Acta Arith. 82 (1997), 309–330.
61. [61]
A. Guthman, Asymptotic expansions for Dirichlet series associated to cusp forms. Publ. Inst. Math. (Beograd) (N.S.) 65 (79) (1999), 69–96.Google Scholar
62. [62]
H. Hamburger, Über die Riemannsche Funktionalgleichung der (-Funktion I,II,III, Math. Zeit. 10 (1921), 240–254; 11 (1922), 224–245; 13 (1922) 283–311.
63. [63]
G. H. Hardy and J. E. Littlewood, The zeros of Riemann’s zeta-function on the critical line, Math. Zeit. 10 (1921), 283–317.
64. [64]
E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 11 (1936),664–699.Google Scholar
65. [65]
E. Hecke, Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Edwards, Ann Arbor, 1938.Google Scholar
66. [66]
E. Hecke, Herleitung des Euler-Produkts der Zetafuncktion und einiger L-Reihen aus ihr Funktionalgleichung, Math. Ann. 119 (1944), 266–287.
67. [67]
T. Hiramatsu, Y. Mimura and I. Takada, Dedekind sum and automorphic forms, RIMS Kokyuroku 572 (1985), 151–175 (in Japanese).Google Scholar
68. [68]
J-I. Igusa, Lectures on forms of higher degree, Tata Institute of Fundamental Research, Bombay, 1978.
69. [69]
A. Ivie, The Riemann Zeta-Function, John Wiley and Sons, New York, 1985.Google Scholar
70. [70]
M. Jutila, On the approximate functional equation for (2(s) and other Dirichlet series, Quart. J. Math. Oxford(2) 37 (1986), 193–209.
71. [71]
S. Kanemitsu, M. Katsurada and M. Yoshimoto, On the Hurwitz-Lerch zeta function, Aeq. Math. 59 (2000), 1–19.
72. [72]
S. Kanemitsu, H. Kumagai and M. Yoshimoto, Sums involving the Hurwitz zeta function, The Ramanujan J. 5 (2001), 5–19.
73. [73]
S. Kanemitsu, H. Kumagai and M. Yoshimoto, On rapidly convergent series expressions for zeta-and L-values, and log sine integrals, The Ramanujan J. 5 (2001), 91–104.
74. [74]
S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On zeta-and L-function values at special rational arguments via the modular relation, Proc. Int. Conf. SSFA, Vol. I (2001), 21–42.Google Scholar
75. [75]
S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On the values of the Riemann zeta-function at rational arguments, Hardy Ramanujan J. 24 (2001), 10–18.
76. [76]
S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On rapidly convergent series for Dirichlet L-function values via the modular relation, Proc. of the International Conference on Number Theory and Discrete Mathematics in honour of Srinivasa Ramanujan, 114–133, Hindustan Book Agency, 2002.Google Scholar
77. [77]
S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On rapidly convergent series for the Riemann zeta-values via the modular relation, preprint.Google Scholar
78. [78]
S. Kanemitsu, Y. Tanigawa and M. Yoshimoto, On multiple Hurwitz zeta-function values at rational arguments, preprint.Google Scholar
79. [79]
M. Katsurada, Rapidly convergent series representations for ((2n+1) and their X-analogue, Acta Arith. 90 (1999), 79–89.
80. [80]
M. Katsurada, On an asymptotic formula of Ramanujan for a certain theta-type series, Acta Arith. 97 (2001), 157–172.
81. [81]
D. Klusch, On Entry 8 of Chapter 15 of Ramanujan’s Notebook II, Acta Arith. 58 (1991), 59–64.
82. [82]
M. Knopp, Hamberger’s theorem on ç(s) and the abundance principle for Dirichlet series with functional equations, Number Theory (ed. by R. P. Barn-bah et al.), 201–216, Hindustan Book Agency, New Delhi, 2000.Google Scholar
83. [83]
N. Koshlyakov, Investigation of some questions of analytic theory of the rational and quadratic fields, I-III (Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 18 (1954), 113–144, 213–260, 307–326; Errata 19 (1955), 271.Google Scholar
84. [84]
N. Kurokawa, 100 years of zeta regularized product, The 39th algebra symposium (1994), 153–166 (in Japanese).Google Scholar
85. [85]
R. Kuz’min, Contributions to the theory of a class of Dirichlet series (Russian), Izv. Akad. Nauk SSSR, Ser. Math. Nat. Sci. 7 (1930), 115–124.Google Scholar
86. [86]
R. Kuz’min, On the roots of Dirichlet series, Izv. Akad. Nauk SSSR, Ser. Math. Nat. Sci. 7 (1934), 1471–1491.Google Scholar
87. [87]
S. Lang, Introduction to Modular Forms, Springer, Berlin-New York, 1976.
88. [88]
A. F. Lavrik, Approximate functional equations of Dirichlet functions (Russian). Izv. Akad. Nauk SSSR, Ser. Mat. 32 (1968), 134–185; English translation in Math. USSR-Izv. 2 (1968), 129–179.
89. [89]
A. F. Lavrik, An approximate functional equation for the Dirichlet L-function, Trudy Moskov Mat. Obsc. 18 (1968), 91–104 =Trans. Moscow Math. Soc. 18 (1968), 101–115.
90. [90]
A. F. Lavrik, The principle of the theory of nonstandard functional equation for Dirichlet functions, consequences and applications of it, Trudy Mat. Inst. Steklov 132 (1973), 70–76= Proc. Steklov Int. Math. 132 (1973), 77–85.
91. [91]
A. F. Lavrik, Functional equations with a parameter for zeta-functions (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 54 (1990), 501–521; English translation in Math. USSR-Izv. 36 (1991), 519–540.
92. [92]
Ju. V. Linnik, An asymptotic formula in an additive problem of Hardy and Littlewood, lzv. Akad. Nauk SSSR Ser. Mat. 24 (1960), 629–706; English transl., Amer. Math. Soc. Transi. (2) 46 (1965), 65–148.Google Scholar
93. Ju. V. Linnik, All large numbers are sum of a prime and two squares (A problem of Hardy and Littlewood) II Mat. Sb. 53 (1961), 3–38; English transi., Amer. Math. Soc. Transi. (2) 37 (1964), 197–240.Google Scholar
94. [94]
J. Manin, Cyclotomic fields and modular curves, Russian Math. Surveys 26 (1971), no. 6, 7–71.
95. [95]
J. Manin, Parabolic points and zeta functions of modular curves, Math. USSR Izvestia 6 (1972), 19–64.
96. [96]
J. Manin, Periods of parabolic forms and p-adic Hecke series, Math. USSR Sbornik 21 (1973), 371–393.
97. [97]
B. Mazur and H.P.F. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.
98. [98]
Y. Motohashi, Lectures on the Riemann-Siegel Formula, Ulam Seminar, Dept. of Math., Univ. of Colorado, Boulder 1987.Google Scholar
99. [99]
A. P. Ogg, Modular Forms and Dirichlet Series, Benjamin, New York, 1969.
100. [100]
S. Raghavan, On certain identities due to Ramanujan, Quart. J. Math. Oxford (2) 37 (1986), 221–229.
101. [101]
R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, 1977.
102. [102]
M. J. Razar, Values of Dirichlet series at integers in the critical strip, Modular Functions of One Variable VI, Bonn 1976, Lecture Notes in Math. 627, Springer-Verlag, Berlin (1977), 1–10.Google Scholar
103. [103]
B. Riemann, Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. der Berliner Akad. (1859), 671–680= Ges. Math. Werke, 145–153, Dover, New York, 1953.Google Scholar
104. [104]
F. Sato, Searching for the origin of prehomogeneous vector spaces, at annual meeting of the Math. Soc. Japan 1992 (in Japanese).Google Scholar
105. [105]
A. Selberg and S. Chowla, On Epstein’s zeta-function, J. Reine Angew. Math. 227 (1967)86–110= Collected Papers of Atle Selberg, Vol. I, 521–545, Springer, 1989.Google Scholar
106. [106]
J. P. Serre, A course in Arithmetic, Springer-Verlag, New York, 1973.Google Scholar
107. [107]
G. Shimura, Sur les intégral attachées aux formes automorphes, J. Math. Soc. Japan 11 (1959), 291–311.
108. [108]
G. Shimura, Introduction to the Theory of Automorphic Functions, Princeton University Press, Princeton, N. J. (1971).Google Scholar
109. [109]
C. L. Siegel, Über Riemanns Nachlaß zur analytischen Zahlentheorie, Quellen u. Studien zur Geschichte der Math., Astr. Phys., 2 (1932), 45–80 =Ges. Abh., I, 275–310, Springer, Berlin-New York 1966.Google Scholar
110. [110]
C. L. Siegel, Contribution to the theory of the Dirichlet L-series and the Epstein zeta-functions, Ann. of Math. 44 (1943), 143–172 = Ges. Abh., II, 360–389, Springer, Berlin-New York 1966.Google Scholar
111. [111]
C. L. Siegel, A simple proof of i (-1/r) = 7 7 (r) T/i, Mathematika 1 (1954), p.4 =Ges. Abh., III, 188, Springer, Berlin-New York 1966.Google Scholar
112. [112]
J. R. Smart, On the values of thè Epstein zeta function, Galsgow Math. J. 14 (1973), 1–12.
113. [113]
H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001.
114. [114]
H. M. Stark, L-functions and character sums for quadratic forms (I) and (II), Acta Arith. 14 (1968), 35–50, and ibid. 15 (1969), 307–317.
115. [115]
A. Terras, Bessel series expansion of the Epstein zeta function and the functional equation, Trans. Amer. Math. Soc. 183 (1973), 477–486.
116. [116]
A. Terras, Some formulas for the Riemann zeta function at odd integer argument resulting from Fourier expansions of the Epstein zeta function, Acta Arith. 29 (1976), 181–189.
117. [117]
A. Terras, The Fourier expansion of Epstein’s zeta function for totally real algebraic number fields and some consequences for Dedekind’s zeta function, Acta Arith. 30 (1976), 187–197.
118. [118]
A. Terras, Applications of special functions for the general linear group to number theory, Séminaire Delange-Pisot-Poitou, 18e année, 1976/77, No. 23, 1–16.Google Scholar
119. [119]
A. Terras, The Fourier expansion of Epstein’s zeta function over an algebraic number field and its consequences for algebraic number theory. Acta Arith. 32 (1977), 37–53.
120. [120]
A. Terras, A relation between ç(s) and ç(s — 1) for any algebraic number field, in Algebraic Number Fields A. Frohlich (Ed.), Academic Press, N.Y., 1977, 475–483.Google Scholar
121. [121]
A. Terras, The minima of quadratic forms and the behavior of Epstein and Dedekind zeta functions, J. Number Theory 12 (1980), 258–272.
122. [122]
A. Terras, Harmonic Analysis on Symmetric Spaces and Applications I, II, Springer Verlag, New York-Berlin-Heidelberg, 1985.
123. [123]
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, (second edition revised by D. R. Heath-Brown ), OUP 1986.Google Scholar
124. [124]
M. Toyoizumi, Ramanujan’s formulae for certain Dirichlet series. Comment. Math. Univ. St. Paul. 30 (1981), 149–173; 31 (1982), 87.
125. [125]
A. Weil, Sur une formule classique, J. Math. Soc. Japan 20 (1968), 400–402 = Coll. Papers, III, 198–200, Springer, New York, 1980.Google Scholar
126. [126]
A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann. 168 (1967), 149–156 = Coll. Papers, III, 165–172, Springer, New York, 1979.Google Scholar
127. [127]
A. Weil, Remarks on Hecke’s lemma and its use, Algebraic Number Theory, Intern. Symposium Kyoto 1976, S. Iyanaga (ed.), Jap. Soc. for the Promotion of Science 1977, pp. 267–274=Coll. Papers III, 405–412, Springer, New York, 1980.Google Scholar
128. [128]
J. R. Wilton, A proof of Burnside’s formula for log I’(x + 1) and certain allied properties of Riemann’s (-function. Messenger Math. 52 (1922/1923), 90–93.Google Scholar
129. [129]
D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic forms, Modular Functions of One Variable VI, Bonn 1976, Lecture Notes in Math. 627, Springer-Verlag, Berlin (1977), 105–169.Google Scholar

## Authors and Affiliations

• Shigeru Kanemitsu
• 1
• Yoshio Tanigawa
• 2
• Masami Yoshimoto
• 2