Skip to main content

Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems

  • Chapter

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

We present a series of four self-contained lectures on the following topics;

  1. (I)

    An introduction to 4-dimensional 1 ≤ N ≤ 4 supersymmetric Yang-Mills theory, including particle and field contents, N = 1 and N = 2 superfield methods and the construction of general invariant Lagrangians;

  2. (II)

    A review of holomorphicity and duality in N = 2 super-Yang-Mills, of Seiberg-Witten theory and its formulation in terms of Riemann surfaces;

  3. (III)

    An introduction to mechanical Hamiltonian integrable systems; such as the Toda and Calogero-Moser systems associated with general Lie algebras; a review of the recently constructed Lax pairs with spectral parameter for twisted and untwisted elliptic Calogero-Moser systems;

  4. (IV)

    A review of recent solutions of the Seiberg-Witten theory for general gauge algebra and adjoint hypermultiplet content in terms of the elliptic Calogero-Moser integrable systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu.A. Golfand and E.P. Lichturan, “Extension of the algebra of Poincare group generators and violation of P invariance”, JETP Lett. 13 (1971), 323–326;

    ADS  Google Scholar 

  2. J.-L. Gervais and B. Sakita, “Field theory interpretation of supergauges in dual models”, Nucl. Phys. B34 (1971), 632–639;

    Article  MathSciNet  ADS  Google Scholar 

  3. D.V. Volkov and V.P. Akulov, “Possible universal neutrino interaction”, JETP Lett. 16 (1972), 438–440;

    ADS  Google Scholar 

  4. J. Wess and B Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B70 (1974), 39–50.

    Article  MathSciNet  ADS  Google Scholar 

  5. J. Wess and J. Bagger, Supersymmetry’ and Supergravity, Princeton Univ. Press, 1983;

    Google Scholar 

  6. P. West, Introduction to Supersymmetry and Super-gravity, World Scientific, 1990;

    Google Scholar 

  7. S.J. Gates, M.T. Grisaru, M. Rocek, and W. Siegel, Superspace, Benjamin/Cummings Publ. Comp., 1983.

    Google Scholar 

  8. F. Wilczek, “QCD in extreme conditions,” in this book.

    Google Scholar 

  9. M.E. Peskin and D.V. Schroeder, An Introduction to Quantum Field Theory, Addison-Wesley, 1995;

    Google Scholar 

  10. T.P. Cheng and L.F. Li, Gauge Theory of Elementary Particle Physics, Oxford Univ. Press, 1984;

    Google Scholar 

  11. S. Weinberg, The Quantum Theory of Fields, Cambridge Univ. Press, 1996.

    Google Scholar 

  12. WWW Reviews of Particle Physics, http://www-pdg.1b1.gov/1999.

  13. K.S. Babu, J.C. Pati, and F. Wilczek, “Fermion masses, neutrino oscillations and proton decay in the light of SuperKamiokande,” Nucl. Phys. B566 (2000), 33 91, hep-ph/9812538.

    Google Scholar 

  14. . C. Montonen and D. Olive, “Magnetic monopoles as gauge particles? Phys. Lett. B72 (1977), 117–120;

    ADS  Google Scholar 

  15. P. Goddard, J. Nuyts, and D. Olive, “Gauge theories and magnetic charge,” Nucl. Phys. B125 (1977), 1–28.

    Article  MathSciNet  ADS  Google Scholar 

  16. N. Seiberg and E. Witten, “Electro-magnetic duality, monopole con-densation, and confinement in .ÍV = 2 supersymmetric Yang-Mills theory,” Nucl. Phys. B426 (1994), 19–52, hep-th/9407087; “Monopoles, duality, and chiral symmetry breaking in. IV = 2 supersymmetric QCD,” Nucl. Phys. B431 (1994), 484 550, hep-th/9410167.

    Google Scholar 

  17. J. Polchinski, “String Theory,” Cambridge Univ. Press, 1998.

    Google Scholar 

  18. J. Maldacena, “The large N limit of superconformal theories and supergravity,” Adv. Theor. Math. Phys. 2 (1998), 231–252, hepth/9711200;

    Google Scholar 

  19. S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B428 (1998), 105–114, hep-th/9802109;

    Google Scholar 

  20. E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998), 253 291, hep-th/9802150.

    Google Scholar 

  21. S. Lee, S. Minwalla, M. Rangamani, and N. Seiberg, “Three-point functions of chiral operators in D = 4, Ar = 4 SYM at large N,” Adv. Theor. Math. Phys. 2 (1998), 697–718, hep-th/9806074;

    Google Scholar 

  22. E. D’Hoker, D.Z. Freedman, and W. Skiba, “Field theory tests for the correlators in the AdS/CFT correspondence,” Phys. Rev. D59(1999), 045008 , hep-th/9807098;

    Google Scholar 

  23. K. Intriligator and W. Skiba, “Bonus symmetry and the operator product expansion of Af = 4 super-Yang—Mills,” Nucl. Phys. B559 (1999), 165–183, hep-th/9905020.

    Google Scholar 

  24. P. Howe and P. West, “Superconformal invariants and extended supersymmetry,” Phys. Lett. B400(1997), 307–314, hep-th/9611075;

    Google Scholar 

  25. P.S. Howe, E. Sokatchev, and P. West, “3-point functions in N = 4 Yang-Mills,” Phys. Lett. B444(1998), 341–351, hep-th/9808162.

    Google Scholar 

  26. R. Grimm, M. Sohnius, and J. Wess, “Extended supersymmetry and gauge theories,” Nucl. Phys. B133 (1978), 275–284.

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained Ar = 2 matter, Yang—Mills and supergravity theories in harmonic superspace,” Class. Quant. Gray. 1 (1984), 469–498;

    Article  ADS  Google Scholar 

  28. G.G. Hartwell, P.S. Howe, (Npq) harmonic superspace,“ Int. J. Mod. Phys. A10 (1995), 3901–3919;

    MathSciNet  ADS  Google Scholar 

  29. P.S. Howe, “A superspace survey,” Class. Quant. Gray. 12 (1995), 1823–1880.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. B.M. Zupnik, “The action of the supersymmetric AI = 2 gauge theory in harmonic superspace,” Phys. Lett. B183 (1987), 175–176; “Solution of the constraints of the supergauge theory in the harmonic SU(2)/U(1)-superspace,” Theor. Math. Phys. 69 (1986), 1101–1105.

    Article  MathSciNet  Google Scholar 

  31. K.G. Wilson and J. Kogut, “The renormalization group and the epsilon expansion,” Phys. Rep. 12 (1974), 75–200 .

    Google Scholar 

  32. . A. Shifman and A.I. Vainshtein, “Solution of the anomaly puzzle in susy gauge theories and the Wilson operator expansion”, Nucl. Phys. B277 (1986), 456–486;

    Article  ADS  Google Scholar 

  33. A. Shifman and A.I. Vainshtein, “On holomorphic dependence and infrared effects in supersymmetric gauge theories”, Nucl. Phys. B359 (1991), 571–580;

    Article  MathSciNet  ADS  Google Scholar 

  34. D. Amati, K. Konishi, Y. Meurice, G.C. Rossi, and G. Veneziano, “Nonperturbative aspects in supersymmetric gauge theories,” Phys. Rep. 162 (1988), 169–248.

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Seiberg, “Naturalness versus supersymmetric nonrenormalization theorems,” Phys. Lett. B318 (1993), 469–475;

    MathSciNet  ADS  Google Scholar 

  36. N. Seiberg, “Exact results on the space of vacua of four-dimensional SUSY gauge theories,” Phys. Rev. D49 (1994), 6857–6863.

    MathSciNet  Google Scholar 

  37. P.C. Argyres and M. Douglas, “New phenomena in SU(3) super-symmetric gauge theory,” Nucl. Phys. B448 (1995), 93–126, hepth/9505062.

    Google Scholar 

  38. G. Hooft, “Magnetic monopoles in unified gauge theories,” Nucl. Phys. B79 (1974), 276–284;

    Article  ADS  Google Scholar 

  39. A.M. Polyakov, “Particle spectrum in the quantum field theory,” JETP Lett. 20 (1974), 194–195.

    ADS  Google Scholar 

  40. M.K. Prasad and C.M. Sommerfield, “Exact classical solution for the ‘t Hooft Monopole and the Julia Zee dyon,” Phys. Rev. Lett. 35 (1975), 760–762;

    Google Scholar 

  41. E.B. Bogomolnyi, “The stability of classical solutions,” Sov. J. Nucl. Phys. 24 (1976), 449–454.

    MathSciNet  Google Scholar 

  42. E. Witten, “Dyons of charge e8/27r,” Phys. Lett. B86 (1979), 283–287.

    ADS  Google Scholar 

  43. E. Witten and D. Olive, “Supersymmetry algebras that include topological charges”, Phys. Lett. B78 (1978), 97–101.

    ADS  Google Scholar 

  44. B. de Wit and A. Van Proeyen, “Potentials and symmetries of general gauged Ar = 2 supergravity-Yang-Mills models,” Nucl. Phys. B245 (1984), 89–117;

    Article  ADS  Google Scholar 

  45. S. Ferrara, “Calabi Yau moduli space, special geometry and mirror symmetry,” Mod. Phys. Lett. A6 (1991), 2175–2180;

    ADS  Google Scholar 

  46. A. Strominger, “Special geometry,” Comm Math. Phys. 133 (1990), 163–180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, “Simple singularities and Ar 2 supersymmetric gauge theories,” Phys. Lett. B344 (1995), 169–175, hep-th/9411048;

    Google Scholar 

  48. P. Argyres and A. Faraggi, “The vacuum structure and spectrum of N =2 supersymmetric SU(N) gauge theory,” Phys. Rev. Lett. 73 (1995), 3931 3934, hepth/9411057;

    Google Scholar 

  49. P. Argyres, M.R. Plesser, and A. Shapere, “The Coulomb phase of AT =2 supersymmetric QCD,” Phys. Rev. Lett. 75 (1995), 1699–1702, hep-th/9505100;

    Google Scholar 

  50. M.R. Abolhasani, M. Alishahiha, and A.M. Ghezelbash, “The moduli space and monodromies of the N =2 supersymmetric Yang—Mills theory with any Lie gauge group,” Nucl. Phys. B480 (1996), 279–295, hep-th/9606043;

    Google Scholar 

  51. M. Alishahiha, F. Ardalan, and F. Mansouri, “The moduli space of the N = 2 su persymmetric G2 Yang-Mills theory,” Phys. Lett. B381 (1996), 446–450, hep-th/9512005;

    Google Scholar 

  52. A. Hanany and Y. Oz, “On the quantum moduli space of vacua of the Ar =2 supersymmetric SU(N) gauge theories,” Nucl. Phys. B452 (1995), 283–312, hep-th/9505075;

    Google Scholar 

  53. A. Hanany, “On the quantum moduli space of vacua of Ar = 2 supersymmetric gauge theories,” Nucl. Phys. B466 (1996), 85–100, hep-th/9509176.

    Google Scholar 

  54. E. D’Hoker, I.M. Krichever, and D.H. Phong, “The effective prepotential for Ar =2 supersymmetric SU(N) gauge theories,” Nucl. Phys. B489 (1997), 179–210, hep-th/9609041.

    Google Scholar 

  55. E. D’Hoker, I.M. Krichever, and D.H. Phong, “The effective prepotential of Ar = 2 supersymmetric SO(Nc) and Sp(N) gauge theories,” Nucl. Phys. B489 (1997), 211–222, hep-th/9609145.

    Google Scholar 

  56. S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “One-instanton tests of a Seiberg Witten curve from M-theory: the antisymmetric representation of SU(N),” Nucl. Phys. B533 (1988), 275–302 , hep-th/9804105;

    Google Scholar 

  57. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “Oneinstanton predictions of a Seiberg-Witten curve from M-theory: the symmetric representation of SU(N),” Int. J. Mod. Phys. A14 (1999), 301–321, hep-th/9804151;

    Google Scholar 

  58. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “One-instanton predictions for nonhyperel-liptic curves derived from M-theory,” Nucl. Phys. B536 (1988), 245— 257, hep-th/9806144;

    Google Scholar 

  59. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “One-instanton predictions of Seiberg-Witten curves for product groups,” Phys. Lett. B452 (1999), 260–264, hepth/9901124;

    Google Scholar 

  60. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “Two antisymmetric hypermultiplets in Al 2 SU(N) gauge theory: ‘Seiberg—Witten curve and M-theory interpretation,” Nucl. Phys. B558 (1999), 41=62, hep-th/9904078; “Tests of M-theory from Al’ = 2 Seiberg—Witten theory,” hep-th/9911022.

    Google Scholar 

  61. I.P. Ennes, S.G. Naculich, H. Rhedin, and H.J. Schnitzer, “Oneinstanton predictions of Seiberg-Witten curves for product groups,” Phys. Lett. B452 (1999), 260–264, hep-th/9901124;

    Google Scholar 

  62. U. Feichtinger, “The prepotential of Ar = 2 SU(2) x SU(2) supersymmetric Yang Mills theory with bifundamental matter,” Phys. Lett. B465 (1999), 155 162, hep-th/9908143.

    Google Scholar 

  63. A. Ceresole, R. D’Auria, and S. Ferrara, “On the geometry of moduli space of vacua in Al = 2 supersymmetric Yang—Mills theory,” Phys. Lett. B339 (1994), 71–76, hep-th/9408036;

    Google Scholar 

  64. A. Klemm, W. Lerche, and S. Theisen, “Nonperturbative effective actions of, V = 2 super-symmetric gauge theories,” Int. J. Mod. Phys. All (1996), 1929–1973, hep-th/9505150;

    Google Scholar 

  65. J. Isidro, A. Mukherjee, J. Nunes, and H. Schnitzer, “A new derivation of Picard-Fuchs equations for effective Al = 2 super Yang-Mills theories,” Nucl. Phys. 492 (1997), 647–681, hepth/9609116;

    Google Scholar 

  66. J. Isidro, A. Mukherjee, J. Nunes, and H. Schnitzer, “A note on the Picard—Fuchs equations for Al = 2 Seiberg-Witten theories,” Int. J. Mod. Phys. A13 (1998), 233–250, hep-th/9703176;

    Google Scholar 

  67. J. Isidro, A. Mukherjee, J. Nunes, and H. Schnitzer, “On the Picard Fuchs equations for massive ./V = 2 Seiberg-Witten theories,”Nucl. Phys. B502 (1997), 363–382, hepth/9704174.

    Google Scholar 

  68. E. D’Hoker, I.M. Krichever, and D.H. Phong, “The renormalization group equation for Al = 2 supersymmetric gauge theories,” Nucl. Phys. B494 (1997), 89–104, hep-th/9610156.

    Google Scholar 

  69. M. Matone, “Instantons and recursion relations in Al = 2 SUSY gauge theories,” Phys. Lett. B357 (1996), 342–348, hep-th/9506102;

    Google Scholar 

  70. T. Eguchi and S.K. Yang, “Prepotentials of Al = 2 susy gauge theories and soliton equations,” Mod. Phys. Lett. All (1996), 131–138, hepth/9510183;

    Google Scholar 

  71. T. Nakatsu and K. Takasaki, “Whitham-Toda hierarchy and Al = 2 supersymmetric Yang-Mills theory,” Mod. Phys. Lett. All (1996), 157–168, hep-th/9509162;

    Google Scholar 

  72. J. Sonnenschein, S. Theisen, and S. Yankielowicz, “On the relation between the holomorphic pre-potential and the quantum moduli in SUSY gauge theories,” Phys. Lett. B367 (1996), 145 150, hep-th/9510129;

    Google Scholar 

  73. K. Takasaki, “Whitham deformations and tau functions in 1V= 2 supersymmetric gauge the-ones,” Prog. Theor. Phys. Suppl. 135 (1999), 53–74, hep-th/9905221;

    Google Scholar 

  74. J. Edelstein, M. Gomez-Reina, and J. Mas, “Instanton corrections in N 2 supersymmetric theories with classical gauge groups and fundamental matter hypermultiplets,” Nucl Phys. B561 (1909), 273 292, hep-th/9904087.

    Google Scholar 

  75. A. Marshakov, A. Mironov, and A. Morozov. “WDVV-like equations in JV= 2 SUSY Yang Mills theory,” Phys. Lett. B389 (1996), 43 52, hep-th/9607109;

    Google Scholar 

  76. A. Marshakov, A. Mironov, and A. Morozov. “More evidence for the WDVV equations in JV 2 SUSY Yang Mills theory,” Int. J. Mod. Phys. A15 (2000), 1157 1206, hep-th/9701123;

    Google Scholar 

  77. J.M. Isidro, “On the WDVV equation and M- theory,” Nucl. Phys. B539 (1999), 379–402, hep-th/9805051.

    Google Scholar 

  78. I.M. Krichever, “The tau function of the universal Whitham hierarchy, matrix models, and topological field theories,” Comm Pure Appt, Math. 47 (1994), 437–475; “

    Google Scholar 

  79. I.M. Krichever, The dispersionless Lax equations and topological minimal models,“ ` Comm Math. Phys. 143 (1992), 415–429: B.A. Dubrov.in. ”l íaiüil.ioniaii formalism for Whitham hierarchies and topological Landau Ginzburg models,“ Comm. Math. Phys. 145 (1992), 195–207;

    Article  Google Scholar 

  80. I.M. Krichever, “Integrable systems in topological field theory,” Nucl. Phys. B379 (1992). 627–689; “Geometry of 2D topological field theories,” in Integrable Systems and Quantum Groves. eds. M. Francaviglia and S. Greco, Lecture Notes in Math., vol. 1620, Springer, 1996, 120–348.

    Google Scholar 

  81. G. Chan and E. D’Hoker, “Instanton recursion for the effective prepotential in IV = 2 super Yang Mills,” Neel. Phys. B564 (2000), 503 516, hep-th/9906193.

    Google Scholar 

  82. J.D. Edelstein and J. Mas, “Strong coupling expansion and Scilx’rg Witten Whitham equations,” Phys. Lett. B452 (1999). (i9 75]tep_ th/9901006.

    Google Scholar 

  83. M. Douglas and S. Shenker, “Dynamics of SU(N) super’yniimetric gauge theory,” Nucl. Phys. B447 (1995), 271–296, hep-th/603163;

    Google Scholar 

  84. E. D’Hoker and D.H. Phong, “Strong coupling expansions of SIT(N) Seiberg Witten theory,” Phys. Lett. B397 (1997), 94–103, hep th/9701055.

    Google Scholar 

  85. M. Marino and G. Moore, “The Donaldson Witten function for gauge groups of rank larger than one,” Comm Math. Phys 199 (1998), 25–69, hep-th/9802185;

    Google Scholar 

  86. M. Marino, “The uses of Whitham hierarchies,” Prog. Theor. Phys. Suppl. 135 (1999), 29–52, hep-th/9905053.

    Google Scholar 

  87. W. Lerche, “Introduction to Seiberg-Witten theory and its stringy origins,” Nucl. Phys. Proc. Suppl. 55B (1997), 83 117, hepth/9611190;

    Google Scholar 

  88. A. Marshakov, “On integrable systems and supersymmetric gauge theories,” Theor. Math. Phys. 112 (1997), 791–826, hepth/9702083;

    Google Scholar 

  89. A. Klemm, “On the geometry behind .Af = 2 supersymmetric effective actions in, four dimensions,” Trieste 1996, High Energy Physics and Cosmology, 120–242, hep-th/9705131;

    Google Scholar 

  90. A. Marshakov and A. Mironov, “Seiberg-Witten systems and Whitham hierarchires: a short review,” hep-th/9809196;

    Google Scholar 

  91. E. D’Hoker and D.H. Phong, “Seiberg—Witten theory and Integrable Systems,” hep-th/9903068; C. Lozano, “Duality in topological quantum field theories,” hepth/9907123.

    Google Scholar 

  92. P. Argyres and A. Shapere, “The vacuum structure of ,’V = 2 superQCD with classical gauge groups,” Nucl. Phys. B461 (1996), 437–459,hep-th/9509175;

    Google Scholar 

  93. U.H. Danielsson and B. Sundborg, “The moduli space and monodromies of N = 2 supersymmetric SO(2r + 1) gauge theories”, Phys. Lett. B358 (1995), 273–280, hep-th/9504102;

    Google Scholar 

  94. A. Brandhuber and K. Landsteiner, “On the monodromies of Ar = 2 supersymmetric Yang—Mills theories with gauge group SO(2n),” Phys. Lett. B358 (1995), 73–80, hep-th/9507008.

    Google Scholar 

  95. . A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras. I, Birkhäuser, Boston, 1990 and references therein; A.N. Leznov and M.V. Saveliev, “Group theoretic methods for integration of nonlinear dynamical systems,” Birkhäuser, Boston, 1992.

    Google Scholar 

  96. M. Adler and P. Van Moerbeke, “The Toda lattice, Dynkin diagrams, singularities and Abelian varieties,” Inventa Math. 103 (1991), 223278; “Completely integrable systems, Euclidean Lie algebras, and curves,” Advances in Math. 38 (1980), 267–317;

    Article  MATH  Google Scholar 

  97. M. Adler and P. Van Moerbeke, “Linearization of Hamiltonian systems, Jacobi varieties, and representation theory, ” Advances in Math. 38 (1980), 318–379.

    Article  MATH  Google Scholar 

  98. A. Gorskii, I.M. Krichever, A. Marshakov, A. Mironov, and A. Morozov, “Integrability and Seiberg—Witten exact solution,” Phys. Lett. B355 (1995), 466–474, hep-th/9505035.

    Google Scholar 

  99. E. Martinet and N. Warner, “Integrable systems and supersymmetric gauge theories,” Nucl. Phys. B459 (1996), 97–112, hep-th/9509161.

    Google Scholar 

  100. F. Calogero, “Exactly solvable one-dimensional many-body problems,” Lett. Nuovo Cim. 13 (1975), 411–416;

    Article  MathSciNet  Google Scholar 

  101. J. Moser, “Three integrable Hamiltonian systems. connected with isospectral deformations,” Advances in Math. 16 (1975), 197–220;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. B. Sutherland, “Exact results for a quantum many-body problem in one dimension. II,” Phys. A5 (1972), 1372–1376;

    ADS  Google Scholar 

  103. C. Marchioro, F. ’ Calogero, and O. Ragnisco, “Exact solution of the classical and quantal one-dimensional many-body problem with the two-body potential V(ax) = G2A2/sinh2(ax),” Lett. Nuovo Cim. 13 (1975), 383–387;

    Article  MathSciNet  Google Scholar 

  104. S.N.M. Ruijsenaars, “Systems of Calogero-Moser type,” in Particles and Fields, eds. G. Semenoff and L. Vinet, Springer, 1999, 251–352.

    Google Scholar 

  105. A. Polychronakos, “Lattice integrable systems of Haldane—Shastry type,” Phys. Rev. Lett. 70 (1993), 2329–2331; “

    Google Scholar 

  106. A. Polychronakos, New integrable systems from unitary matrix models,“ Phys. Lett. B277 (1992), 102–108; ”Generalized statistics in one dimension,“ presented at Les Houches Summer School in Theoretical Physics, Session 69: Topological Aspects of Low-Dimensional Systems, Les Houches, France, 7–31 July 1998, hep-th/9902157;

    Google Scholar 

  107. L. Lapointe and L. Vinet, “Exact operator solution of the Calogero-Sutherland model,” Commun Math. Phys. 178 (1996), 425–452, q-alg/9509003.

    Google Scholar 

  108. I.M. Krichever, “Elliptic solutions of the Kadomtsev—Petviashvili equation and integrable systems of particles,” Funct. Anal Appl. 14 (1980) 282–290.

    Article  Google Scholar 

  109. A. Treibich and J.-L. Verdier, “Solitons elliptiques,” The Grothen-dieck Festschrift, vol. III, Birkhäuser, Boston, 1990, 437–480;

    Book  Google Scholar 

  110. R. Don-agi and E. Markham, “Spectral curves, algebraically integrable Hamiltonian systems, and moduli of bundles,” in Integrable Systems and Quantum Groups, Lecture Notes in Math., vol. 1620, Springer, 1996, 1–119, alg-geom/9507017

    Google Scholar 

  111. E. Markham, “Spectral curves and integrable systems,” Comp. Math: 93 (1994), 255–290;

    Google Scholar 

  112. R. Donagi, “Seiberg—Witten integrable systems,” in Algebraic geometrySanta Cruz 1995, eds. J. Kollar, R. Lazarsfeld, and D.R. Morrison, Proc. Sympos. Pure Math., vol: 62, Part 2, Amer. Math. Soc., 1997, 3–43, alg-geom/9705010.

    Google Scholar 

  113. M.R. Adams, J. Harnard, and J. Hurtubise, “Coadjoint orbits, spectral curves, and Darboux coordinates,” in The Geometry of Hamiltonian Systems, ed.. T. Ratiu, Math. Sci. Res. Inst. Publ., vol. 22, Springer, 1991, 9–21;

    Google Scholar 

  114. M.R. Adams, J. Harnard, and J. Hurtubise, “Darboux coordinates and Liouville-Arnold integration in loop algebras,” Comm. Math. Phys. 155 (1993), 385–413;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  115. J. Hurtubise, “Integrable systems and algebraic surfaces,” Duke Math. J. 83 (1996), 19–50 Erratum, Duke Math. J. 84 (1996), 815.

    Article  MathSciNet  Google Scholar 

  116. H. Braden, “A conjectured R-matrix, J. Phys. A 31 (1998), 1733–1741.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  117. H.W. Braden and V.M. Buchstaber, “The general analytic solution of a functional equation of addition type,” Siam J. Math. Anal. 28 (1997), 903–923.

    MathSciNet  MATH  Google Scholar 

  118. I. Inozemtsev, “Lax representation with spectral parameter on a torus for integrable particle systems,” Lett. Math. Phys. 17 (1989), 11–17;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  119. I. Inozemtsev, “The finite Toda lattices,” Comm. Math. Phys. 121 (1989) 628–638.

    MathSciNet  ADS  Google Scholar 

  120. . E. D’Hoker and R. Jackiw, “Classical and quantum Liouville theory,” Phys. Rev. D26 (1982), 3517–3542;

    MathSciNet  ADS  Google Scholar 

  121. E. D’Hoker and P. Kurzepa, “2-D quantum gravity and Liouville theory,” Mod. Phys. Lett. A5 (1990), 1411–1421;

    MathSciNet  ADS  Google Scholar 

  122. E. D’Hoker, “Equivalence of Liouville theory and 2-D quantum gravity,” Mod. Phys. Lett. A6 (1991), 745–767.

    MathSciNet  ADS  Google Scholar 

  123. M.J. Ablowitz, D.J. Kaup, A.C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett. 30 (1973), 1262 1264;

    Google Scholar 

  124. S. Coleman, “The quantum sine-Gordon equation as the massive Thirring model,” Phys. Rev. Dll (1975), 2088–2097;

    Google Scholar 

  125. E.K. Sklyanin, L.A. Takhtajan, and L.D. Faddeev, “The quantum inverse problem method. I”, Theor. Math. Phys. 40, (1979), 688–706.

    Article  Google Scholar 

  126. H. Airault, H. McKean, and J. Moser, “Rational and elliptic solutions of the KdV equation and integrable systems of N particles on a line,” Comm Pure Appl. Math. 30 (1977), 95–125.

    MathSciNet  MATH  Google Scholar 

  127. I.M. Krichever and D.H. Phong, “On the integrable geometry of .N 2 supersymmetric gauge theories and soliton equations,” J. Differential Geometry 45 (1997), 349–389, hep-th/9604199.

    Google Scholar 

  128. I.M. Krichever and D.H. Phong, “Symplectic forms in the theory of solitons,” in Surveys in Differential Geometry, vol. IV , eds. C.L. Terng and K. Uhlenbeck, International Press, 1998, 239–313, hepth/9708170; I.M. Krichever, “Elliptic solutions to difference nonlinear equations and nested Bethe ansatz equations,” solv-int/9804016.

    Google Scholar 

  129. M.A. Olshanetsky and A.M. Perelomov, “Completely integrable Hamiltonian systems connected with semisimple Lie algebras,” Invent. Math. 37 (1976), 93–108;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  130. M.A. Olshanetsky and A.M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras,” Phys. Rep. 71 C (1981), 313–400.

    Google Scholar 

  131. E. D’Hoker and D.H. Phong, “Calogero—Moser Lax pairs with spectral parameter for general Lie algebras,” Nucl. Phys. B530 (1998), 537 610, hep-th/9804124.

    Google Scholar 

  132. E. D’Hoker and D.H. Phong, “Calogero—Moser and Toda systems for twisted and untwisted affine Lie algebras,” Nucl. Phys. B530 (1998), 611–640, hep-th/9804125.

    Google Scholar 

  133. A. Bordner, E. Corrigan, and R. Sasaki, “Calogero—Moser systems. A new formulation,” Prog. Theor. Phys. 100 (1998), 1107–1129, hepth/9805106;

    Google Scholar 

  134. A. Bordner, R. Sasaki, and K. Takasaki, “Calogero— Moser systems. II. Symmetries and foldings,” Prog. Theor. Phys. 101 (1999), 487 518, hep-th/9809068.

    Google Scholar 

  135. S.P. Khastgir, R. Sasaki, and K. Takasaki, “Calogero—Moser Models. IV. Limits to Toda theory,” Prog. Theor. Phys. 102 (1999), 749–776, hep-th/9907102.

    Google Scholar 

  136. P. Goddard and D. Olive, “Kac-Moody and Virasoro algebras in relation to quantum physics,” Int. J. Mod. Phys. A1 (1986), 303–414;

    MathSciNet  ADS  Google Scholar 

  137. V. Kac, Infinite-Dimensional Lie Algebras, Birkhäuser, Boston, 1983.

    Google Scholar 

  138. R. Donagi and E. Witten, “Supersymmetric Yang—Mills and integrable systems,” Nucl. Phys. B460 (1996), 288–334, hep-th/9510101.

    Google Scholar 

  139. E. Martinec, “Integrable structures in supersymmetric gauge and string theory,” Phys. Lett. B367 (1996), 91–96, hep-th/9510204;

    Google Scholar 

  140. A. Gorsky and N. Nekrasov, “Elliptic Calogero Moser system from two-dimensional current , algebra,” preprint ITEP-NG/1–94, hepth/9401021;

    Google Scholar 

  141. N. Nekrasov, “Holomorphic bundles and many-body sys tems,” Comm Math. Phys. 180 (1996), 587–604, hep-th/9503157;

    Google Scholar 

  142. M. Olshanetsky, “Generalized Hitchin systems and the Knizhnik Zamolodchikov-Bernard equation on elliptic curves,” Lett. Math. Phys. 42(1997), 59–71, hep-th/9510143.

    Google Scholar 

  143. E. D’Hoker and D.H. Phong, “Calogero—Moser systems in SU(N) Seiberg Witten theory,” Nucl. Phys. B513(1998), 405–444, hepth/9709053.

    Google Scholar 

  144. E. D’Hoker and D.H. Phong, “Order parameters, free fermions, and conservation laws for Calogero—Moser systems,” Asian J. ` Math. 2 (1998), 655–666, hep-th/9808156.

    Google Scholar 

  145. E. D’Hoker and D.H. Phong, “The geometry of string perturbation theory,” Rev. Mod. Physics 60 (1988), 917–1065;

    Article  MathSciNet  ADS  Google Scholar 

  146. E. D’Hoker and D.H. Phong, “Loop amplitudes for the fermionic string,” Nucl. Phys. B278 (1986), 225–241;

    Article  MathSciNet  ADS  Google Scholar 

  147. E. D’Hoker and D.H. Phong, “On determinants of Laplacians on Riemann surfaces,” Comm. Math. Phys. 105 (1986), 537–545.

    Article  MathSciNet  Google Scholar 

  148. K. Vaninsky, “On explicit parametrization of spectral curves for Moser-Calogero particles and its applications,” Int. Math. Res. Notices (1999), 509–529.

    Google Scholar 

  149. J. Minahan, D. Nemeschansky, and N. Warner, “Instanton expansions for mass deformed.1V = ”4 super Yang-Mills“ theory,” Nucl. Phys. B528(1998), 109–132, hep-th/9710146.

    Google Scholar 

  150. E. Witten, “Solutions of four-dimensional field theories via M- Theory,” Nucl. Phys. B500(1997), 3–42, hep-th/9703166.

    Google Scholar 

  151. S. Katz, P. Mayr, and C. Vafa, “Mirror symmetry and exact solutions of 4D N= 2 gauge theories. I.;” Adv. Theor. Math. Phys. 1(1998), 53–114, hep-th/9706110;

    Google Scholar 

  152. S. Katz, A. Klemm, and C. Vafa, “Geometric engineering of quantum field theories,” Nucl. Phys. B497 (1997), 173–195, hep-th/9609239;

    Google Scholar 

  153. M. Bershadsky, K. Intriligator, S. Kachru, D. R. Morrison, V. Sadov, and C. Vafa, “Geometric singularities and enhanced gauge symmetries,” Nucl. Phys. B481 (1996), 215–252, hepth/9605200;

    Google Scholar 

  154. S. Kachru and C. Vafa, “Exact results for Af = 2 cornpactifications of heterotic strings,” Nucl. Phys. B450 (1995), 69–89, hep-th/9505105.

    Google Scholar 

  155. E. D’Hoker and D. H. Phong, “Lax pairs and spectral curves for Calogero-Moser and spin Calogero-Moser systems,” Regular and Chaotic Dynamics textbf3 (1998), 27–39, hep-th/9903002.

    Google Scholar 

  156. E. D’Hoker and D. H. Phong, “Spectral curves for super Yang-Mills with adjoint hypermultiplet for general Lie algebras,” Nucl. Phys. B534 (1998), 697–719, hep-th/9804126.

    Google Scholar 

  157. A. Brandhuber, J. Sonnenschein, S. Theisen, and S. Yankielowicz, “M Theory and Seiberg-Witten curves: orthogonal and symplectic groups,” Nucl. Phys. B504 (1997), 175–188, hep-th/9705232;

    Google Scholar 

  158. K. Landsteiner and E. Lopez, “New curves from branes,” Nucl.Phys. B516 (1998), 273–296, hep-th/9708118;

    Google Scholar 

  159. K. Landsteiner, E. Lopez, and D.A. Lowe, “M = 2 supersymmetric gauge theories, branes and orientifolds,” Nucl. Phys. B507 (1997), 197–226, hep-th/9705199.

    Google Scholar 

  160. A. M. Uranga, “Towards mass deformed .IV = 4 SO(N) and Sp(K) gauge theories from brane configurations,” Nucl. Phys. B526 (1998), 241–277, hep-th/9803054.

    Google Scholar 

  161. T. Yokono, “Orientifold four plane in brane configurations and JV = 4 USp(2N) and SO(2N) theory,” Nucl. Phys. B532 (1998), 210–226, hep-th/9803123;

    Google Scholar 

  162. K. Landsteiner, E. Lopez, and D. Lowe, “Supersymmetric gauge theories from branes and orientifold planes,” JHEP 9807 (1998), 011, hep-th/9805158.

    Google Scholar 

  163. A. Gorsky, “Branes and Integrability in the JV = 2 SUSY YM theory,” Phys. Lett. B410 (1997), 22–26, hep-th/9612238;

    Google Scholar 

  164. A. Gorsky, S. Gukov, and A. Mironov, “Susy field theories, integrable systems and their stringy brane origin,” Nucl. Phys. B518 (1998), 689–713, hep-th/9710239;

    Google Scholar 

  165. A. Cherkis and A. Kapustin, “Singular monopoles and supersymmetric gauge theories in three dimensions,” Nucl. Phys. B525 (1998), 215–234, hep-th/9711145.

    Google Scholar 

  166. H. Braden, A. Marshakov, A. Mironov, and A. Morozov, “The Ruijsenaars-Schneider model in the context of Seiberg-Witten theory,” Nucl. Phys. B558 (1999), 371–390, hep-th/9902205;

    Google Scholar 

  167. Y. Ohta, “Instanton correction of prepotential in Ruijsenaars model associated with /V = 2 SU(2) Seiberg-Witten,” J. Math. Phys. 41 (2000), 45414550, hep-th/9909196;

    Google Scholar 

  168. H.W. Braden, A. Marshakov, A. Mironov, and A. Morozov, “Seiberg-Witten theory for - a nontrivial compactification from five to four dimensions,” Phys. Lett. B448 (1999), 195–202, hep-th/9812078;

    Google Scholar 

  169. K. Takasaki, “Elliptic Calogero-Moser systems and isomonodromic deformations,” J. Math. Phys. 40 (1999), 5787–5821, math.QA/9905101;

    Google Scholar 

  170. A.M. Khvedelidze and D.M. Mladenov, “EulerCalogero-Moser system from SU(2) Yang-Mills theory,” Phys.Reú. D62 (2000), 125016, hep-th/9906033;

    Google Scholar 

  171. A. Gorsky and A. Mironov, “Solutions to the reflection equation and integrable systems for N = 2 SQCD with classical groups,” Nucl. Phys. B550(1999), 513–530, hepth/9902030;

    Google Scholar 

  172. I.M. Krichever, “Elliptic analog of the Toda lattice,” Int. Math. Res. Notices (2000), 383–412, hep-th/9909224.

    Google Scholar 

  173. N. Hitchin, “Stable bundles and integrable systems,” Duke Math. J. 54 (1987), 91–114.

    MathSciNet  MATH  Google Scholar 

  174. A. Erdélyi, W. Magnus, F. Oberhettinger, and F.G. Tricomi, Higher Transcendental Functions, Vol. II, R.E. Krieger, 1981.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

D’Hoker, E., Phong, D.H. (2002). Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems. In: Saint-Aubin, Y., Vinet, L. (eds) Theoretical Physics at the End of the Twentieth Century. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3671-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3671-7_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-2948-8

  • Online ISBN: 978-1-4757-3671-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics