Subband Coding

  • Pierre Brémaud


Let x(t) be a stable base-band (B) real signal that we seek to analyze in the following sense. For fixed N = 2 k we wish to obtain for all 1 ≤ i ≤2 k the signals x i (t) with Fourier transforms
$${\hat x_i}\left( v \right) = {1_{{B_i}}}\left( v \right)\hat x\left( v \right)$$
, where B i is the frequency band
$${B_i}\left[ {\frac{{i - 1}} {{{2^k}}}B,\frac{i} {{{2^k}}}B} \right]$$


Original Signal Filter Bank Finite Impulse Response Finite Impulse Response Filter Perfect Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B1]
    Ablowitz, M.J. and Jokas, A.S. (1997). Complex Variables, Cambridge University Press.MATHGoogle Scholar
  2. [B2]
    Daubechies, I. (1992). Ten Lectures on Wavelets, CBSM-NSF Regional Conf. Series in Applied Mathematics, SIAM: Philadelphia, PA.CrossRefGoogle Scholar
  3. [B3]
    Gasquet, C. and Witomski, P. (1991). Analyse de Fourier et Applications, Masson: Paris.Google Scholar
  4. [B4]
    Haykin, S. (1989). An Introduction to Analog and Digital Communications, Wiley: New York.Google Scholar
  5. [B5]
    Hirsch, M.W. and Smale, S. (1974). Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press: San Diego.MATHGoogle Scholar
  6. [B6]
    Kodaira, K. (1984). Introduction to Complex Analysis, Cambridge University Press.MATHGoogle Scholar
  7. [B7]
    Lighthill, M.J. (1980). An Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press.Google Scholar
  8. [B8]
    Nussbaumer, H.J. (1981). Fast Fourier Transform and Convolution Algorithms, Springer-Verlag: New York.MATHCrossRefGoogle Scholar
  9. [B9]
    Orfanidis, S. (1985). Optimal Signal Processing, McMillan: New York.Google Scholar
  10. [B10]
    Papoulis, A. (1984). Signal Analysis, McGraw-Hill: New York.Google Scholar
  11. [B11]
    Rudin, W (1966) Real and Complex Analysis, McGraw-Hill: New York.MATHGoogle Scholar
  12. [B12]
    Vetterli, M. and Kovačević, J. (1995). Wavelets and Sub-Band Coding, Prentice-Hall: Englewood Cliffs, NJ.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Pierre Brémaud
    • 1
    • 2
  1. 1.École Polytechnique Fédérale de LausanneSwitzerland
  2. 2.INRIA/École Normale SupérieureFrance

Personalised recommendations