Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 15))

Abstract

The view of neurons in sensory cortices as performing feature detection on the peripheral input gained acceptance to a large extent from studies of cortical processing of visual information. In this view of the visual system, information from simple feature detectors in the retina (photoreceptors and retinal ganglion cells) converges at the level of the primary cortex to give rise to more complex, orientation-tuned neurons. These, in turn, send their outputs to higher cortical areas where more complex features are detected. For example, in some parts of the Infero-Temporal cortex (IT) there are neurons that can be considered to be medium-level feature detectors: they are sensitive to features that are more complex than oriented bars but less complex than full visual objects (Fujita et al. 1992; Ito et al. 1995). These neurons presumably converge further up to produce object-sensitive neurons such as the face-sensitive cells (Perrett et al. 1982).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles M, Goldstein MH, Jr. (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33: 172–187.

    PubMed  CAS  Google Scholar 

  • Ahissar M, Ahissar E, Bergman H, Vaadia E (1992) Encoding of sound-source location and movement: activity of single neurons and interactions between adjacent neurons in the monkey auditory cortex. J Neurophysiol 67: 203–215.

    PubMed  CAS  Google Scholar 

  • Bakin JS, Kwon MC, Masino SA, Weinberger NM, Frostig RD (1996) Suprathreshold auditory cortex activation visualized by intrinsic signal optical imaging. Cereb Cortex 6: 120–130.

    Article  PubMed  CAS  Google Scholar 

  • Barth C, Burkard R (1993) Effects of noise bursts rise time and level on the human stem auditory evoked response. Audiology 32: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Bregman A, Ahad P, Kim J, Melnerich L (1994) Resetting the pitch-analysis system. 1. Effects of rise times of tones in noise backgrounds or of harmonics in a complex tone. Perception and Psychophysics 56: 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77: 923–943.

    PubMed  CAS  Google Scholar 

  • Calford MB, Semple MN (1995) Monaural inhibition in cat auditory cortex. J Neurophysiol 73: 1876–1891.

    PubMed  CAS  Google Scholar 

  • Calhoun BM, Schreiner CE (1998) Spectral envelope coding in cat primary auditory cortex: linear and non-linear effects of stimulus characteristics. Eur J Neurosci 10: 926–940.

    Article  PubMed  CAS  Google Scholar 

  • Cariani PA, Delgutte B (1996a) Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J Neurophysiol 76: 1698–1716.

    CAS  Google Scholar 

  • Cariani PA, Delgutte B (1996b) Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. J Neurophysiol 76: 1717–1734.

    CAS  Google Scholar 

  • Colombo M, Rodman HR, Gross CG (1996) The effects of superior temporal cortex lesions on the processing and retention of auditory information in monkeys (Cebus apella). J Neurosci 16: 4501–4517.

    PubMed  CAS  Google Scholar 

  • Colombo M, D’Amato MR, Rodman HR, Gross CG (1990) Auditory association cortex lesions impair auditory short-term memory in monkeys. Science 247: 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Costalupes JA,Young ED, Gibson DJ (1984) Effects of continuous noise backgrounds on rate responses of auditory nerve fibers in cat. J Neurophysiol 51: 1326–1344.

    Google Scholar 

  • Creutzfeldt O, Hellweg FC, Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp Brain Res 39: 87–104.

    Article  PubMed  CAS  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol 70: 1988–2009.

    PubMed  CAS  Google Scholar 

  • deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381: 610–613.

    Article  PubMed  CAS  Google Scholar 

  • deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons [see comments]. Science 280: 1439–1443.

    Article  PubMed  CAS  Google Scholar 

  • Dinse HR, Godde B, Hilger T, Reuter G, Cords SM, Lenarz T, von Seelen W (1997a) Optical imaging of cat auditory cortex cochleotopic selectivity evoked by acute electrical stimulation of a multi-channel cochlear implant. Eur J Neurosci 9: 113–119.

    Article  CAS  Google Scholar 

  • Dinse HR, Reuter G, Cords SM, Godde B, Hilger T, Lenarz T (1997b) Optical imaging of cat auditory cortical organization after electrical stimulation of a multichannel cochlear implant: differential effects of acute and chronic stimulation. Am J Otol 18: S17–18.

    CAS  Google Scholar 

  • Eggermont JJ (1993) Wiener and Volterra analyses applied to the auditory system. Hear Res 66: 177–201.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont J (1996) How homogeneous is cat primary auditory cortex? Evidence from simultaneous single-unit recordings. Aud Neurosci 2: 79–96.

    Google Scholar 

  • Ehret G, Schreiner CE (1997) Frequency resolution and spectral integration (critical band analysis) in single units of the cat primary auditory cortex. J Comp Physiol (A) 181: 635–650.

    Article  CAS  Google Scholar 

  • Esser KH, Condon CJ, Suga N, Kanwal JS (1997) Syntax processing by auditory cortical neurons in the FM-FM area of the mustached bat Pteronotus parnellii. Proc Natl Acad Sci U S A 94: 14019–14024.

    Article  PubMed  CAS  Google Scholar 

  • Fishbach

    Google Scholar 

  • Fishman YI, Reser DH, Arezzo JC, Steinschneider M (1998) Pitch vs. spectral encoding of harmonic complex tones in primary auditory cortex of the awake monkey. Brain Res 786: 18–30.

    Article  PubMed  CAS  Google Scholar 

  • Fishman Y, Reser D, Arezzo J, Steinschneider M (2000) Complex tone processing in primary auditory cortex of the awake monkey. II. Pitch versus critical band representation. J Acoust Soc Am 108: 247–262.

    Article  PubMed  CAS  Google Scholar 

  • Frostig RD, Gottlieb Y, Vaadia E, Abeles M (1983) The effects of stimuli on the activity and functional connectivity of local neuronal groups in the cat auditory cortex. Brain Res 272: 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex [see comments]. Nature 360: 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Gaese BH, Ostwald J (1995) Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur J Neurosci 7: 438–450.

    Article  PubMed  CAS  Google Scholar 

  • Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci U S A 95: 12663–12670.

    Article  PubMed  CAS  Google Scholar 

  • Gibson DJ, Young ED, Costalupes JA (1985) Similarity of dynamic range adjustments in auditory nerve and cochlear nuclei. J Neurophysiol 53: 940–958.

    PubMed  CAS  Google Scholar 

  • Glass I, Wollberg Z (1983a) Auditory cortex responses to sequences of normal and reversed squirrel monkey vocalizations. Brain Behav Evol 22: 13–21.

    Article  CAS  Google Scholar 

  • Glass I, Wollberg Z (1983b) Responses of cells in the auditory cortex of awake squirrel monkeys to normal and reversed species-specific vocalizations. Hear Res 9: 27–33.

    Article  CAS  Google Scholar 

  • Goldstein MH Jr., Abeles M, Daly RL, McIntosh J (1970) Functional architecture in cat primary auditory cortex: tonotopic organization. J Neurophysiol 33: 188–197.

    PubMed  Google Scholar 

  • Goldstein MH Jr., Abeles M (1975) Note on tonotopic organization of primary auditory cortex in the cat. Brain Res 100: 188–191.

    Article  PubMed  Google Scholar 

  • Grady CL, Van Meter JW, Maisog JM, Pietrini P, Krasuski J, Rauschecker JP (1997) Attention-related modulation of activity in primary and secondary auditory cortex. Neuroreport 8: 2511–2516.

    Article  PubMed  CAS  Google Scholar 

  • Grunewald A, Linden JF, Andersen RA (1999) Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. J Neurophysiol 82: 330–342.

    PubMed  CAS  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectrotemporal pattern analysis. J Acoust Soc Am 76: 50–56.

    Article  PubMed  CAS  Google Scholar 

  • Harrison RV, Harel N, Kakigi A, Raveh E, Mount RJ (1998) Optical imaging of intrinsic signals in chinchilla auditory cortex. Audiol Neurootol 3: 214–223.

    Article  PubMed  CAS  Google Scholar 

  • Heil P (1997a) Auditory cortical onset responses revisited. I. First-spike timing. J Neurophysiol 77: 2616–2641.

    CAS  Google Scholar 

  • Heil P (1997b) Auditory cortical onset responses revisited. II. Response strength. J Neurophysiol 77: 2642–2660.

    CAS  Google Scholar 

  • Heil P (1998) Further observations on the threshold model of latency for auditory neurons [comment]. Behav Brain Res 95: 233–236.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Irvine DR (1996) On determinants of first-spike latency in auditory cortex. Neuroreport 7: 3073–3076.

    Article  PubMed  CAS  Google Scholar 

  • Heil P, Irvine DR (1997) First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol 78: 2438–2454.

    PubMed  CAS  Google Scholar 

  • Heil P, Irvine DR (1998) Functional specialization in auditory cortex: responses to frequency-modulated stimuli in the cat’s posterior auditory field. J Neurophysiol 79: 3041–3059.

    PubMed  CAS  Google Scholar 

  • Heil P, Rajan R, Irvine DR (1992a) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: Effects of variation of stimulus parameters. Hear Res 63: 108–134.

    Article  CAS  Google Scholar 

  • Heil P, Rajan R, Irvine DR (1992b) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. II: Organization of response properties along the “isofrequency” dimension. Hear Res 63: 135–156.

    Article  CAS  Google Scholar 

  • Heil P, Rajan R, Irvine DR (1994) Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hear Res 76: 188–202.

    Article  PubMed  CAS  Google Scholar 

  • Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol (Lond) 497: 629–638.

    CAS  Google Scholar 

  • Hosokawa Y, Horikawa J, Nasu M, Taniguchi I (1997) Real-time imaging of neural activity during binaural interaction in the guinea pig auditory cortex. J Comp Physiol A 181: 607–614.

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Adrian HO (1977) Binaural columns in the primary field (Al) of cat auditory cortex. Brain Res 138: 241–257.

    Article  PubMed  CAS  Google Scholar 

  • Imig TJ, Brugge JF (1978) Sources and terminations of callosal axons related to binaural and frequency maps in primary auditory cortex of the cat. J Comp Neurol 182: 637–660.

    Article  PubMed  CAS  Google Scholar 

  • Irvine DR, Huebner H (1979) Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J Neurophysiol 42: 107–122.

    PubMed  CAS  Google Scholar 

  • Ito M, Tamura H, Fujita I, Tanaka K (1995) Size and position invariance of neuronal responses in monkey inferotemporal cortex. J Neurophysiol 73: 218–226.

    PubMed  CAS  Google Scholar 

  • Kanwal JS, Matsumura S, Ohlemiller K, Suga N (1994) Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. J Acoust Soc Am 96: 1229–1254.

    Article  PubMed  CAS  Google Scholar 

  • Kitzes LM, Hollrigel GS (1996) Response properties of units in the posterior auditory field deprived of input from the ipsilateral primary auditory cortex. Hear Res 100: 120–130.

    Article  PubMed  CAS  Google Scholar 

  • Klein D, Depireux D, Simon J, Shamma S (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. J Comput Neurosci 9: 85–111.

    Article  PubMed  CAS  Google Scholar 

  • Klump GM, Langemann U (1995) Comodulation masking release in a songbird. Hear Res 87: 157–164.

    Article  PubMed  CAS  Google Scholar 

  • Korte M, Rauschecker JP (1993) Auditory spatial tuning of cortical neurons is sharpened in cats with early blindness. J Neurophysiol 70: 1717–1721.

    PubMed  CAS  Google Scholar 

  • Kowalski N, Versnel H, Shamma SA (1995) Comparison of responses in the anterior and primary auditory fields of the ferret cortex. J Neurophysiol 73: 1513–1523.

    PubMed  CAS  Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996a) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol 76: 3503–3523.

    CAS  Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996b) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. J Neurophysiol 76: 3524–3534.

    CAS  Google Scholar 

  • Langner G, Sams M, Heil P, Schulze H (1997) Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J Comp Physiol (A) 181: 665–676.

    Article  CAS  Google Scholar 

  • Linden JF, Grunewald A, Andersen RA (1999) Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. J Neurophysiol 82: 343–358.

    PubMed  CAS  Google Scholar 

  • Lutkenhoner B, Lamertmann C, Ross B, Steinstrater O (2001) Tonotopic organization of the human auditory cortex revisited: High-precision neuromagnetic studies. In: Houtsma A, Kohlrausch A, Prijs V, Schoonhoven R (eds) Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker Publishing BV, p. 13.

    Google Scholar 

  • Markram H, Lubke J, Frotscher M, Roth A, Sakmann B (1997) Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J Physiol Lond 500: 409–440.

    PubMed  CAS  Google Scholar 

  • Matsubara JA, Phillips DP (1988) Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. J Comp Neurol 268: 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson JR (1992) Neural selectivity for interaural frequency disparity in cat primary auditory cortex. Hear Res 58: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML, Grasse KL (1993) Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps. Exp Brain Res 94: 65–87.

    Article  PubMed  CAS  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML (1997) Functional topography of cat primary auditory cortex: response latencies. J Comp Physiol (A) 181: 615633.

    Google Scholar 

  • Meredith MA, Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J Comp Neurol 289: 687–707.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich MM, Knight PL, Roth GL (1975) Representation of cochlea within primary auditory cortex in the cat. J Neurophysiol 38: 231–249.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Dykes RW, Merzenich MM (1980) Binaural response-specific bands in primary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency contours. Brain Res 181: 31–48.

    Article  PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Clock AE, Xu L, Green DM (1994) A panoramic code for sound location by cortical neurons. Science 264: 842–844.

    Article  PubMed  CAS  Google Scholar 

  • Nelken I, Versnel H (2000) Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. European J Neurosci 12: 549562.

    Google Scholar 

  • Nelken I, Young ED (1994) Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrow-band and wide-band stimuli. J Neurophysiol 71: 2446–2462.

    PubMed  CAS  Google Scholar 

  • Nelken I, Young ED (1997) Linear and Nonlinear Spectral Integration in Type IV Neurons of the Dorsal Cochlear Nucleus. I. Regions of Linear Interaction. J Neurophys 78: 790–799.

    CAS  Google Scholar 

  • Nelken I, Prut Y, Vaadia E, Abeles M (1994a) In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex. Hear Res 72: 237–253.

    Article  CAS  Google Scholar 

  • Nelken I, Prut Y, Vaadia E, Abeles M (1994b) Population responses to multifrequency sounds in the cat auditory cortex: one-and two-parameter families of sounds. Hear Res 72: 206–222.

    Article  CAS  Google Scholar 

  • Nelken I, Prut Y, Vaddia E, Abeles M (1994c) Population responses to multifrequency sounds in the cat auditory cortex: four-tone complexes. Hear Res 72: 223–236.

    Article  CAS  Google Scholar 

  • Nelken I, Bar Yosef O, Young ED (1997a) Responses of field AES neurons to virtual space stimuli. In: Palmer AR, Rees A, Summerfield AQ, Meddis R (eds) Psychophysical and Physiological Advances in Hearing. London: Whurr Publ. pp. 504–512.

    Google Scholar 

  • Nelken I, Kim PJ, Young ED (1997b) Linear and Nonlinear Spectral Integration in Type IV Neurons of the Dorsal Cochlear Nucleus. II. Predicting Responses With the Use of Nonlinear Models. J Neurophys 78: 800–811.

    CAS  Google Scholar 

  • Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397: 154–157.

    Article  PubMed  CAS  Google Scholar 

  • Nelken I, Jacobson G, Ahdut L, Ulanovsky N (2001) Neural correlates of comodulation masking release in auditory cortex of cats. In: Houtsma A, Kohlrausch A, Prijs V, Schoonhoven R (eds) Physiological and Psychophysical Bases of Auditory Function. Maastricht: Shaker Publishing BV.

    Google Scholar 

  • Newman JD, Wollberg Z (1973a) Multiple coding of species-specific vocalizations in the auditory cortex of squirrel monkeys. Brain Res 54: 287–304.

    Article  CAS  Google Scholar 

  • Newman JD, Wollberg Z (1973b) Responses of single neurons in the auditory cortex of squirrel monkeys to variants of a single call type. Exp Neurol 40: 821–824.

    Article  CAS  Google Scholar 

  • Ohlemiller K, Kanwal J, Butman J, Suga N (1994) Stimulus design for auditory neuroethology: synthesis and manipulation of complex communication sounds. Aud Neurosci 1: 19–38.

    Google Scholar 

  • Ohlemiller KK, Kanwal JS, Suga N (1996) Facilitative responses to species-specific calls in cortical FM-FM neurons of the mustached bat. Neuroreport 7: 1749–1755.

    Article  PubMed  CAS  Google Scholar 

  • Olsen JF, Suga N (1991) Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of relative velocity information. J Neurophysiol 65: 1254–1274.

    PubMed  CAS  Google Scholar 

  • O’Neil WE (1995) The Bat Auditory Cortex. In: Popper AN, Fay RR (eds) Hearing by Bats. New York: Springer-Verlag pp. 416–180.

    Chapter  Google Scholar 

  • Pantev C, Hoke M, Lutkenhoner B, Lehnertz K (1989) Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246: 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Pantev C, Elbert T, Ross B, Eulitz C, Terhardt E (1996) Binaural fusion and the representation of virtual pitch in the human auditory cortex. Hear Res 100: 164–170.

    Article  PubMed  CAS  Google Scholar 

  • Pelleg-Toiba R, Wollberg Z (1991) Discrimination of communication calls in the squirrel monkey: “call detectors” or “cell ensembles”? J Basic Clin Physiol Pharmacol 2: 257–272.

    Article  PubMed  CAS  Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47: 329–342.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP (1988) Effect of tone-pulse rise time on rate-level functions of cat auditory cortex neurons: excitatory and inhibitory processes shaping responses to tone onset. J Neurophysiol 59: 1524–1539.

    PubMed  CAS  Google Scholar 

  • Phillips DP (1998) Factors shaping the response latencies of neurons in the cat’s auditory cortex [see comments]. Behav Brain Res 93: 33–41.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Burkard R (1999) Response magnitude and timing of auditory response initiation in the inferior colliculus of the awake chinchilla. J Acoust Soc Am 105: 2731–2737.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Cynader MS (1985) Some neural mechanisms in the cat’s auditory cortex underlying sensitivity to combined tone and wide-spectrum noise stimuli. Hear Res 18: 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Irvine DR (1983) Some features of binaural input to single neurons in physiologically defined area AI of cat cerebral cortex. J Neurophysiol 49: 383–395.

    PubMed  CAS  Google Scholar 

  • Phillips DP, Sark

    Google Scholar 

  • Phillips DP, Orman SS, Musicant AD, Wilson GF (1985) Neurons in the cat’s primary auditory cortex distinguished by their responses to tones and wide-spectrum noise. Hear Res 18: 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Semple MN, Calford MB, Kitzes LM (1994) Level-dependent representation of stimulus frequency in cat primary auditory cortex. Exp Brain Res 102: 210–226.

    Article  PubMed  CAS  Google Scholar 

  • Phillips DP, Semple MN, Kitzes LM (1995) Factors shaping the tone level sensitivity of single neurons in posterior field of cat auditory cortex. J Neurophysiol 73: 674–686.

    PubMed  CAS  Google Scholar 

  • Rauschecker JP, Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. J Neurosci 13: 4538–4548.

    PubMed  CAS  Google Scholar 

  • Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268: 111–114.

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Imig TJ (1980) Tonotopic organization in auditory cortex of the cat. J Comp Neurol 192: 265–291.

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Imig TJ (1983) Auditory cortical field projections to the basal ganglia of the cat. Neuroscience 8: 67–86.

    Article  PubMed  CAS  Google Scholar 

  • Reale RA, Kettner RE (1986) Topography of binaural organization in primary auditory cortex of the cat: effects of changing interaural intensity. J Neurophysiol 56: 663–682.

    PubMed  CAS  Google Scholar 

  • Ricketts C, Mendelson JR, Anand B, English R (1998) Responses to time-varying stimuli in rat auditory cortex. Hear Res 123: 27–30.

    Article  PubMed  CAS  Google Scholar 

  • Rotman Y, Bar Yosef O, Nelken I (2000) Relating Cluster and Population Responses to Natural Sounds and Tonal Stimuli in Cat Primary Auditory Cortex. Hear Res.

    Google Scholar 

  • Rouiller EM, Innocenti GM, De Ribaupierre F (1990) Interconnections of the auditory cortical fields of the cat with the cingulate and parahippocampal cortices. Exp Brain Res 80: 501–511.

    Article  PubMed  CAS  Google Scholar 

  • Schooneveldt GP, Moore BC (1989) Comodulation masking release (CMR) as a function of masker bandwidth, modulator bandwidth, and signal duration. J Acoust Soc Am 85: 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE (1992) Functional organization of the auditory cortex: maps and mechanisms. Curr Opin Neurobiol 2: 516–521.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE (1995) Order and disorder in auditory cortical maps. Curr Opin Neurobiol 5: 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE (1998) Spatial distribution of responses to simple and complex sounds in the primary auditory cortex. Audiol Neurootol 3: 104–122.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE, Calhoun BM (1994) Spectral Envelope Coding in Cat Primary Auditory Cortex: Properties of Ripple Transfer Functions. Auditory Neurosci 1: 39–62.

    Google Scholar 

  • Schreiner CE, Mendelson JR (1990) Functional topography of cat primary auditory cortex: distribution of integrated excitation. J Neurophysiol 64: 1442–1459.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Sutter ML (1992) Topography of excitatory bandwidth in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. J Neurophysiol 68: 1487–1502.

    PubMed  CAS  Google Scholar 

  • Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear Res 32: 49–63.

    Article  PubMed  CAS  Google Scholar 

  • Schreiner CE, Mendelson JR, Sutter ML (1992) Functional topography of cat primary auditory cortex: representation of tone intensity. Exp Brain Res 92: 105–122.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz DW, Tomlinson RW (1990) Spectral response patterns of auditory cortex neurons to harmonic complex tones in alert monkey (Macaca mulatta). J Neurophysiol 64: 282–298.

    PubMed  CAS  Google Scholar 

  • Semple MN, Kitzes LM (1993a) Binaural processing of sound pressure level in cat primary auditory cortex: evidence for a representation based on absolute levels rather than interaural level differences. J Neurophysiol 69: 449–461.

    CAS  Google Scholar 

  • Semple MN, Kitzes LM (1993b) Focal selectivity for binaural sound pressure level in cat primary auditory cortex: two-way intensity network tuning. J Neurophysiol 69: 462–473.

    CAS  Google Scholar 

  • Shamma SA, Symmes D (1985) Patterns of inhibition in auditory cortical cells in awake squirrel monkeys. Hear Res 19: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Shamma SA, Versnel H (1995) Ripple Analysis in Ferret Primary Auditory Cortex. II. Prediction of Unit responses to Arbitrary Spectral Profiles. Auditory Neurosci 1: 255–270.

    Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. J Neurophysiol 69: 367–383.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Versnel H, Kowalski N (1995) Ripple Analysis in Ferret Primary Auditory Cortex. I. Response Characteristics of Single Units to Sinusoidally Rippled Spectra. Auditory Neurosci 1: 233–254.

    Google Scholar 

  • Smolders JW, Aertsen AM, Johannesma PI (1979) Neural representation of the acoustic biotope. A comparison of the response of auditory neurons to tonal and natural stimuli in the cat. Biol Cybern 35: 11–20.

    Article  PubMed  CAS  Google Scholar 

  • Steinschneider M, Reser DH, Fishman YI, Schroeder CE, Arezzo JC (1998) Click train encoding in primary auditory cortex of the awake monkey: evidence for two mechanisms subserving pitch perception. J Acoust Soc Am 104: 2935–2955.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1990) Cortical Computional maps for Auditory Imaging. Neural Networks 3: 3–21.

    Article  Google Scholar 

  • Sutter ML, Schreiner CE (1991) Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J Neurophysiol 65: 1207–1226.

    PubMed  CAS  Google Scholar 

  • Sutter ML, Schreiner CE (1995) Topography of intensity tuning in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. J Neurophysiol 73: 190–204.

    PubMed  CAS  Google Scholar 

  • Taniguchi I, Horikawa J, Hosokawa Y, Nasu M (1997) Optical imaging of neural activity in auditory cortex induced by intracochlear electrical stimulation. Acta Otolaryngol Suppl 532: 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Tian B, Rauschecker JP (1994) Processing of frequency-modulated sounds in the cat’s anterior auditory field. J Neurophysiol 71: 1959–1975.

    PubMed  CAS  Google Scholar 

  • Tian B, Rauschecker JP (1998) Processing of frequency-modulated sounds in the cat’s posterior auditory field. J Neurophysiol 79: 2629–2642.

    PubMed  CAS  Google Scholar 

  • Toldi J, Feher O (1984) Acoustic sensitivity and bimodal properties of cells in the anterior suprasylvian gyrus of the cat. Exp Brain Res 55: 180–183.

    Article  PubMed  CAS  Google Scholar 

  • Turner C, Relkin E, Doucet J (1994) Psychophysical and physiological foward masking probe duration and rise-time effects. J Acoust Soc Am 96: 795–800.

    Article  PubMed  CAS  Google Scholar 

  • Vaadia E (1989) Single-unit activity related to active localization of acoustic and visual stimuli in the frontal cortex of the rhesus monkey. Brain Behav Evol 33: 127–131.

    Article  PubMed  CAS  Google Scholar 

  • Vaadia E, Gottlieb Y, Abeles M (1982) Single-unit activity related to sensorimotor association in auditory cortex of a monkey. J Neurophysiol 48: 1201–1213.

    PubMed  CAS  Google Scholar 

  • Versnel H, Shamma SA (1998) Spectral-ripple representation of steady-state vowels in primary auditory cortex. J Acoust Soc Am 103: 2502–2514.

    Article  PubMed  CAS  Google Scholar 

  • Villa AE, Rouiller EM, Simm GM, Zurita P, De Ribaupierre Y, De Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86: 506–517.

    Article  PubMed  CAS  Google Scholar 

  • Villa AE, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86: 161–178.

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74: 2685–2706.

    PubMed  CAS  Google Scholar 

  • Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Winer JA (1992) The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag pp. 222–409.

    Chapter  Google Scholar 

  • Wollberg Z, Newman JD (1972) Auditory Cortex of Squirrel Monkey: Response Patterns of Single Cells to Species-Specific Vocalizations. Science 175: 212–214.

    Article  PubMed  CAS  Google Scholar 

  • Yan J, Suga N (1999) Corticofugal amplification of facilitative auditory responses of subcortical combination-sensitive neurons in the mustached bat. J Neurophysiol 81: 817–824.

    PubMed  CAS  Google Scholar 

  • Young ED, Brownell WE (1976) Responses to tones and noise of single cells in dorsal cochlear nucleus of unanesthetized cats. J Neurophysiol 39: 282–300.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Suga N (1997) Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J Neurophysiol 78: 3489–3492.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Suga N, Yan J (1997) Corticofugal modulation of frequency processing in bat auditory system. Nature 387: 900–903.

    Article  PubMed  CAS  Google Scholar 

  • Zurita P, Villa AE, de Ribaupierre Y, de Ribaupierre F, Rouiller EM (1994) Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions. Neurosci Res 19: 303–316.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelken, I. (2002). Feature Detection by the Auditory Cortex. In: Oertel, D., Fay, R.R., Popper, A.N. (eds) Integrative Functions in the Mammalian Auditory Pathway. Springer Handbook of Auditory Research, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3654-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3654-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3183-2

  • Online ISBN: 978-1-4757-3654-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics