Advertisement

From the Cochlea to the Cortex and Back

  • Philip H. Smith
  • George A. Spirou
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 15)

Abstract

Among the many unique features of the auditory system one of the more notable is the large number of processing centers (cell groups) interposed between the system’s periphery and its cortex. Our main purpose in this chapter is to build upon the first 2 volumes in this series (Popper and Fay 1992; Webster et al. 1992) by highlighting progress made over the last decade in understanding these structures of the auditory pathway, especially when this information can be related to functional hypotheses about particular cell groups or neural circuits.

Keywords

Hair Cell Auditory Cortex Inferior Colliculus Cochlear Nucleus Medial Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam TJ, Schwarz DWF, Finlayson PG (1999) Firing properties of chopper and delay neurons in the lateral superior olive of the rat. Exp Brain Res 124: 489–502.PubMedCrossRefGoogle Scholar
  2. Adams JC (1983) Cytology of periolivary cells and the organization of their projections in the cat. J Comp Neurol 215: 275–289.PubMedCrossRefGoogle Scholar
  3. Aitkin L, Jones R (1992) Azimuthal processing in the posterior auditory thalamus of cats. Neurosci Lett 142: 81–84.PubMedCrossRefGoogle Scholar
  4. Aitkin LM, Dunlop CW (1969) Inhibition in the medial geniculate body of the cat. Exp Brain Res 7: 68–83.PubMedCrossRefGoogle Scholar
  5. Aitkin LM, Frain SM (1974) Medial geniculate body: unit responses in the awake cat. J Neurophysiol 37: 512–521.PubMedGoogle Scholar
  6. Aitkin LM, Webster WR (1971) Tonotopic organization in the medial geniculate body of the cat. Brain Res 26: 402–405.PubMedGoogle Scholar
  7. Aitkin LM, Webster WR (1972) Medial geniculate body of the cat: organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 35: 365–380.PubMedGoogle Scholar
  8. Aitkin LM, Dickhaus H, Schult W, Zimmermann M (1978) External nucleus of inferior colliculus: auditory and spinal somatosensory afferents and their interactions. J Neurophysiol 41: 837–847.PubMedGoogle Scholar
  9. Allon N, Yeshurun Y (1985) Functional organization of the medial geniculate body’s subdivisions of the awake squirrel monkey. Brain Res 360: 75–82.PubMedCrossRefGoogle Scholar
  10. Amato G, La Grutta V, Enia F (1969) The control exerted by the auditory cortex on the activity of the medial geniculate body and inferior colliculus. Arch Sci Biol 53: 291–313.Google Scholar
  11. Andersen RA, Knight PL, Merzenich MM (1980a) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194: 663–701.CrossRefGoogle Scholar
  12. Andersen RA, Roth GL, Aitkin LM, Merzenich MM (1980b) The efferent projections of the central nucleus and the pericentral nucleus of the inferior colliculus in the cat. J Comp Neurol 194: 649–662.CrossRefGoogle Scholar
  13. Andersen RA, Snyder RL, Merzenich MM (1980c) The topographic organization of corticocollicular projections from physiologically identified loci in the AI, AII, and anterior auditory cortical fields of the cat. J Comp Neurol 191: 479–494.CrossRefGoogle Scholar
  14. Anderson JC, Martin KA, Whitteridge D (1993) Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus. Cereb Cortex 3: 412–420.PubMedCrossRefGoogle Scholar
  15. Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264: 56–72.PubMedCrossRefGoogle Scholar
  16. Azeredo WJ, Kliment ML, Morley BJ, Relkin E, Slepecky NB, Sterns A, Warr WB, Weekly JM, Woods CI (1999) Olivocochlear neurons in the chinchilla: a retrograde fluorescent labelling study. Hear Res 134: 57–70.PubMedCrossRefGoogle Scholar
  17. Bajo VM, Merchan MA, Lopez DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334: 241–262.PubMedCrossRefGoogle Scholar
  18. Bakin JS, Weinberger NM (1996) Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proc Natl Acad Sci U S A 93: 11219–11224.PubMedCrossRefGoogle Scholar
  19. Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12: 2819–2837.PubMedGoogle Scholar
  20. Barth DS, MacDonald KD (1996) Thalamic modulation of high-frequency oscillating potentials in auditory cortex. Nature 383: 78–81.PubMedCrossRefGoogle Scholar
  21. Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81: 1999–2016.PubMedGoogle Scholar
  22. Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) A comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neurosci, 100: 811–828.CrossRefGoogle Scholar
  23. Behrend O, Brand A, Bruetel G, Grothe B (2000) Temporal processing in the gerbil superior olivary complex. Assoc Res Otolaryngol. 23: 33.Google Scholar
  24. Bellingham MC, Lim R, Walmsley B (1998) Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol (Lond) 511: 861–869.CrossRefGoogle Scholar
  25. Bender DB (1983) Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res 279: 258–261.PubMedCrossRefGoogle Scholar
  26. Benedek G, Fischer-Szatmari L, Kovacs G, Perenyi J, Katoh YY (1996) Visual, somatosensory and auditory modality properties along the feline suprageniculateanterior ectosylvian sulcus/insular pathway. Prog Brain Res 112: 325–334.PubMedCrossRefGoogle Scholar
  27. Benedek G, Pereny J, Kovacs G, Fischer-Szatmari L, Katoh YY (1997) Visual, somatosensory, auditory and nociceptive modality properties in the feline suprageniculate nucleus. Neuroscience 78: 179–189.PubMedCrossRefGoogle Scholar
  28. Benson TE, Berglund AM, Brown MC (1996) Synaptic input to cochlear nucleus dendrites that receive medial olivocochlear synapses. J Comp Neurol 365: 27–41.PubMedCrossRefGoogle Scholar
  29. Benson TE, Brown MC (1990) Synapses formed by olivocochlear axon branches in the mouse cochlear nucleus. J Comp Neurol 295: 52–70.PubMedCrossRefGoogle Scholar
  30. Benson TE, Brown MC (1996) Synapses from medial olivocochlear branches in the inferior vestibular nucleus. J Comp Neurol 372: 176–188.PubMedCrossRefGoogle Scholar
  31. Berglund AM, Benson TE, Brown MC (1996) Synapses from labeled type II axons in the mouse cochlear nucleus. Hear Res 94: 31–46.PubMedCrossRefGoogle Scholar
  32. Berglund AM, Brown MC (1994) Central trajectories of type II spiral ganglion cells from various cochlear regions in mice. Hear Res 75: 121–130.PubMedCrossRefGoogle Scholar
  33. Binns KE (1991) In the guinea pig the central representation of auditory space in the superior colliculus and external nucleus of the inferior colliculus are independent. Br J Audiol 25: 55.Google Scholar
  34. Binns KE, Grant S, Withington DJ, Keating MJ (1992) A topographic representation of auditory space in the external nucleus of the inferior colliculus of the guinea-pig. Brain Res 589: 231–242.PubMedCrossRefGoogle Scholar
  35. Bjorkeland M, Boivie J (1984) An anatomical study of the projections from the dorsal column nuclei to the midbrain in cat. Anat Embryol 170: 29–43.PubMedCrossRefGoogle Scholar
  36. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39.PubMedCrossRefGoogle Scholar
  37. Blomqvist A, Danielsson I, Norrsell U (1990) The somatosensory intercollicular nucleus of the cat’s mesencephalon. J Physiol (Lond) 429: 191–203.Google Scholar
  38. Bordi F, LeDoux JE (1994) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98: 261–274.PubMedCrossRefGoogle Scholar
  39. Bourassa J, Deschenes M (1995) Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer. Neuroscience 66: 253–263.PubMedCrossRefGoogle Scholar
  40. Bourassa J, Pinault D, Deschenes M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7: 19–30.PubMedCrossRefGoogle Scholar
  41. Bremer F, Dow RS (1939) The acoustic area of the cerebral cortex in the cat: A com- bined oscillographic and cytoarchitectonic study. J Neurophysiol 2: 308–318.Google Scholar
  42. Brown MC (1987) Morphology of labeled efferent fibers in the guinea pig cochlea. J Comp Neurol 260: 605–618.PubMedCrossRefGoogle Scholar
  43. Brown MC (1989) Morphology and response properties of single olivocochlear fibers in the guinea pig. Hear Res 40: 93–109.PubMedCrossRefGoogle Scholar
  44. Brown MC (1994) Antidromic responses of single units from the spiral ganglion. J Neurophysiol 71: 1835–1847.PubMedGoogle Scholar
  45. Brown MC, Ledwith JVd (1990) Projections of thin (type-II) and thick (type-I) auditory-nerve fibers into the cochlear nucleus of the mouse. Hear Res 49: 105–118.PubMedCrossRefGoogle Scholar
  46. Brown MC, Berglund AM, Kiang NY, Ryugo DK (1988a) Central trajectories of type II spiral ganglion neurons. J Comp Neurol 278: 581–590.CrossRefGoogle Scholar
  47. Brown MC, Liberman MC, Benson TE, Ryugo DK (1988b) Brainstem branches from olivocochlear axons in cats and rodents. J Comp Neurol 278: 591–603.CrossRefGoogle Scholar
  48. Brown MC, Kujawa SG, Duca ML (1998a) Single olivocochlear neurons in the guinea pig. I. Binaural facilitation of responses to high-level noise. J Neurophysiol 79: 3077–3087.Google Scholar
  49. Brown MC, Kujawa SG, Liberman MC (1998b) Single olivocochlear neurons in the guinea pig—II—Response plasticity due to noise conditioning. J Neurophysiol 79: 3088–3097.Google Scholar
  50. Buonomano DV (1999) Distinct functional types of associative long-term potentiation in neocortical and hippocampal pyramidal neurons. J Neurosci 19: 67486754.Google Scholar
  51. Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21: 149–186.PubMedCrossRefGoogle Scholar
  52. Burgess BJ, Adams JC, Nadol JB, Jr. (1997) Morphologic evidence for innervation of Deiters’ and Hensen’s cells in the guinea pig. Hear Res 108: 74–82.PubMedCrossRefGoogle Scholar
  53. Buzsaki G, Smith A, Berger S, Fisher LJ, Gage FH (1990) Petit mal epilepsy and parkinsonian tremor: hypothesis of a common pacemaker. Neuroscience 36: 1–14.PubMedCrossRefGoogle Scholar
  54. Cahill L, Weinberger NM, Roozendaal B, McGaugh JL (1999) Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23: 227–228.PubMedCrossRefGoogle Scholar
  55. Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328: 377–392.PubMedCrossRefGoogle Scholar
  56. Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3: 2350–2364.PubMedGoogle Scholar
  57. Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3: 2365–2380.PubMedGoogle Scholar
  58. Calford MB, Webster WR (1981) Auditory representation within principal division of cat medial geniculate body: an electrophysiology study. J Neurophysiol 45: 1013–1028.PubMedGoogle Scholar
  59. Callaway EM (1998) Local circuits in primary visual cortex of the macaque monkey. Annu Rev Neurosci 21: 47–74.PubMedCrossRefGoogle Scholar
  60. Campbell JP, Henson MM (1988) Olivocochlear neurons in the brainstem of the mouse. Hear Res 35: 271–274.PubMedCrossRefGoogle Scholar
  61. Canlon B, Borg E, Flock A (1988) Protection against noise trauma by pre-exposure to a low level acoustic stimulus. Hear Res 34: 197–200.PubMedCrossRefGoogle Scholar
  62. Cant NB, Hyson RL (1992) Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hear Res 58: 26–34.PubMedCrossRefGoogle Scholar
  63. Cant NB, Benson CG, Schofield BR (1999) Projections from the superior paraolivary nucleus to the inferior colliculus in guinea pigs and gerbils. Assoc Res Otolaryngol 22: 89.Google Scholar
  64. Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264: 847–850.PubMedCrossRefGoogle Scholar
  65. Celio MR (1990) Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35: 375–475.PubMedCrossRefGoogle Scholar
  66. Cetas JS, de Venecia RK, McMullen NT (1999) Thalamocortical afferents of Lorente de No: medial geniculate axons that project to primary auditory cortex have collateral branches to layer I. Brain Res 830: 203–208.PubMedCrossRefGoogle Scholar
  67. Chen K, Waller HJ, Godfrey DA (1998) Effects of endogenous acetylcholine on spontaneous activity in rat dorsal cochlear nucleus slices. Brain Res 783: 219–226.PubMedCrossRefGoogle Scholar
  68. Clarey JC, Irvine DR (1986) Auditory response properties of neurons in the anterior ectosylvian sulcus of the cat. Brain Res 386: 12–19.PubMedCrossRefGoogle Scholar
  69. Clarey JC, Irvine DR (1990a) The anterior ectosylvian sulcal auditory field in the cat: I. An electrophysiological study of its relationship to surrounding auditory cortical fields. J Comp Neurol 301: 289–303.CrossRefGoogle Scholar
  70. Clarey JC, Irvine DR (1990b) The anterior ectosylvian sulcal auditory field in the cat: II. A horseradish peroxidase study of its thalamic and cortical connections. J Comp Neurol 301: 304–324.CrossRefGoogle Scholar
  71. Clarey JC, Barone P, Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: Neurophysiology pp. 232–334. New York: Springer-Verlag.CrossRefGoogle Scholar
  72. Clasca F, Llamas A, Reinoso-Suarez F (1997) Insular cortex and neighboring fields in the cat: a redefinition based on cortical microarchitecture and connections with the thalamus. J Comp Neurol 384: 456–482.PubMedCrossRefGoogle Scholar
  73. Clemo HR, Stein BE (1982) Somatosensory cortex: a `new’ somatotopic representation. Brain Res 235: 162–168.PubMedCrossRefGoogle Scholar
  74. Clugnet MC, LeDoux JE (1990) Synaptic plasticity in fear conditioning circuits: induction of LTP in the lateral nucleus of the amygdala by stimulation of the medial geniculate body. J Neurosci 10: 2818–2824.PubMedGoogle Scholar
  75. Clugnet MC, LeDoux JE, Morrison SF (1990) Unit responses evoked in the amygdala and striatum by electrical stimulation of the medial geniculate body. J Neurosci 10: 1055–1061.PubMedGoogle Scholar
  76. Cohn ES, Kelley PM (1999) Clinical phenotype and mutations in connexin 26 (DFNB1/GJB2), the most common cause of childhood hearing loss. Am J Med Genet 89: 130–136.PubMedCrossRefGoogle Scholar
  77. Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43: 251–261.PubMedCrossRefGoogle Scholar
  78. Conley M, Kupersmith AC, Diamond IT (1991) The organization of projections from subdivisions of the auditory cortex and thalamus to the auditory sector of the thalamic reticular nucleus in Galago. Eur J Neurosci 3: 1089–1103.PubMedCrossRefGoogle Scholar
  79. Cox CL, Sherman SM (1999) Glutamate inhibits thalamic reticular neurons. J Neurosci 19: 6694–6699.PubMedGoogle Scholar
  80. Crabtree JW (1998) Organization in the auditory sector of the cat’s thalamic reticular nucleus. J Comp Neurol 390: 167–182.PubMedCrossRefGoogle Scholar
  81. Crair MC, Malenka RC (1995) A critical period for long-term potentiation at thalamocortical synapses. Nature 375: 325–328.PubMedCrossRefGoogle Scholar
  82. Cruikshank SJ, Weinberger NM (1996) Receptive-field plasticity in the adult auditory cortex induced by Hebbian covariance. J Neurosci 16: 861–875.PubMedGoogle Scholar
  83. De Venecia RK, Smelser CB, Lossman SD, McMullen NT (1995) Complementary expression of parvalbumin and calbindin D-28k delineates subdivisions of the rabbit medial geniculate body. J Comp Neurol 359: 595–612.PubMedCrossRefGoogle Scholar
  84. De Venecia RK, Smelser CB, McMullen NT (1998) Parvalbumin is expressed in a reciprocal circuit linking the medial geniculate body and auditory neocortex in the rabbit. J Comp Neurol 400: 349–362.PubMedCrossRefGoogle Scholar
  85. Dehmel S, Doerrscheidt GJ, Reubsamen R (1999) Electrophysiological characterization of neurons in the superior paraolivary nucleus of the gerbil (Meriones unguiculatus). Assoc Res Otolaryngol 22: 94.Google Scholar
  86. Diamond IT, Jones EG, Powell TP (1969) The projection of the auditory cortex upon the diencephalon and brainstem in the cat. Brain Res 15: 305–340.PubMedCrossRefGoogle Scholar
  87. Diamond ME, Armstrong-James M, Budway MJ, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group (POm) and in the ventral posterior medial nucleus (VPM) of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319: 66–84.PubMedCrossRefGoogle Scholar
  88. Edeline JM, Manunta Y, Nodal FR, Bajo VM (1999) Do auditory responses recorded from awake animals reflect the anatomical parcellation of the auditory thalamus? Hear Res 131: 135–152.PubMedCrossRefGoogle Scholar
  89. Ehrenberger K, Felix D (1991) Glutamate receptors in afferent cochlear neurotransmission in guinea pigs. Hear Res 52: 73–80.PubMedCrossRefGoogle Scholar
  90. Ehrlich D, Casseday JH, Covey E (1997) Neural tuning to sound duration in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Neurophysiol 77: 2360–2372.PubMedGoogle Scholar
  91. Elgoyhen AB (2001) Cloning and functional properties of hair cell nACHRs. Assoc Res Otolaryngol. 24: 138.Google Scholar
  92. Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79: 705–715.PubMedCrossRefGoogle Scholar
  93. Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73: 309–373.PubMedGoogle Scholar
  94. Fanselow MS, LeDoux JE (1999) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23: 229–232.PubMedCrossRefGoogle Scholar
  95. Farb CR, LeDoux JE (1997) NMDA and AMPA receptors in the lateral nucleus of the amygdala are postsynaptic to auditory thalamic afferents. Synapse 27: 106–121.PubMedCrossRefGoogle Scholar
  96. Faye-Lund H, Osen KK (1985) Anatomy of the inferior colliculus in rat. Anat Embryol 171: 1–20.PubMedCrossRefGoogle Scholar
  97. Fechner FP, Burgess BJ, Adams JC, Liberman MC, Nadol JB, Jr. (1998) Dense innervation of Deiters’ and Hensen’s cells persists after chronic deefferentation of guinea pig cochleas. J Comp Neurol 400: 299–309.PubMedCrossRefGoogle Scholar
  98. Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1984) The central projections of intracellularly labeled auditory nerve fibers in cats. J Comp Neurol 229: 432–450.PubMedCrossRefGoogle Scholar
  99. Feliciano M, Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem 65: 1348–1357.PubMedCrossRefGoogle Scholar
  100. Feliciano M, Thompson AM (1995) Descending auditory cortical projections to mid- brain and brainstem auditory structures in the cat. Assoc Res Otolaryngol 18: 163.Google Scholar
  101. Ferragamo MJ, Golding NL, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79: 51–63.PubMedGoogle Scholar
  102. Ferster D, LeVay S (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol 182: 923–944.PubMedCrossRefGoogle Scholar
  103. Finlayson PG, Adam TJ (1997) Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing. Hear Res 103: 1–18.PubMedCrossRefGoogle Scholar
  104. Fitch RH, Miller S, Tallal P (1997) Neurobiology of speech perception. Annu Rev Neurosci 20: 331–353.PubMedCrossRefGoogle Scholar
  105. Fitzpatrick DC, Henson OW, Jr. (1994) Cell types in the mustached bat auditory cortex. Brain Behav Evol 43: 79–91.PubMedCrossRefGoogle Scholar
  106. Fleidervish IA, Binshtok AM, Gutnick MJ (1998) Functionally distinct NMDA receptors mediate horizontal connectivity within layer 4 of mouse barrel cortex. Neuron 21: 1055–1065.PubMedCrossRefGoogle Scholar
  107. Frens MA, Van Opstal AJ, Van der Willigen RF (1995) Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements. Percept Psychophys 57: 802–816.PubMedCrossRefGoogle Scholar
  108. Frenz CM, Van De Water TR (2000) Immunolocalization of connexin 26 in the developing mouse cochlea. Brain Res Rev 32: 177–180.CrossRefGoogle Scholar
  109. Freund TF, Martin KA, Soltesz I, Somogyi P, Whitteridge D (1989) Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. J Comp Neurol 289: 315–336.PubMedCrossRefGoogle Scholar
  110. Friauf E (1994) Distribution of calcium-binding protein calbindin-D28k in the auditory system of adult and developing rats. J Comp Neurol 349: 193–211.PubMedCrossRefGoogle Scholar
  111. Fuentes V, Berrebi AS, Saldana E (1999) Trajectory, morphology, and distribution of axons of the superior paraolivary nucleus (SPON) that innervate the inferior colliculus in the rat. Assoc Res Otolaryngol 22: 222.Google Scholar
  112. Fujino K, Oertel D (2000) Cholinergic modulation of stellate cells in ventral cochlear nucleus in mice. Assoc Res Otolaryngol 23: 33.Google Scholar
  113. Fujino K, Koyano K, Ohmori H (1997) Lateral and medial olivocochlear neurons have distinct electrophysiological properties in the rat brain slice. J Neurophysiol 77: 2788–2804.PubMedGoogle Scholar
  114. Galaburda AM, Menard MT, Rosen GD (1994) Evidence for aberrant auditory anatomy in developmental dyslexia. Proc Natl Acad Sci USA 91: 8010–8013.PubMedCrossRefGoogle Scholar
  115. Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34: 1–25.PubMedCrossRefGoogle Scholar
  116. Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265: 138–142.PubMedCrossRefGoogle Scholar
  117. Gewirtz JC, Davis M (1997) Second-order fear conditioning prevented by blocking NMDA receptors in amygdala. Nature 388: 471–474.PubMedCrossRefGoogle Scholar
  118. Ghoshal S, Kim DO (1996) Marginal shell of the anteroventral cochlear nucleus: intensity coding in single units of the unanesthetized, decerebrate cat. Neurosci Lett 205: 71–74.PubMedCrossRefGoogle Scholar
  119. Gil Z, Amitai Y (1996) Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. J Neurophysiol 76: 2547–2554.PubMedGoogle Scholar
  120. Gilbert CD, Kelly JP (1975) The projection of cells in different layers of the cat’s visual cortex. J Comp Neurol 163: 81–105.PubMedCrossRefGoogle Scholar
  121. Gilbert CD (1983) Microcircuitry of the visual cortex. Annu Rev Neurosci 6: 217–247.PubMedCrossRefGoogle Scholar
  122. Gilbert CD, Wiesel TN (1983) Functional organization of the visual cortex. Prog Brain Res 58: 209–218.PubMedCrossRefGoogle Scholar
  123. Giraud AL, Gamier S, Micheyl C, Lina G, Chays A, Chery-Croze S (1997a) Auditory efferents involved in speech-in-noise intelligibility. Neuroreport 8: 1779–1783.CrossRefGoogle Scholar
  124. Giraud AL, Wable J, Chays A, Collet L, Chery-Croze S (1997b) Influence of contralateral noise on distortion product latency in humans: is the medial olivocochlear efferent system involved? J Acoust Soc Am 102: 2219–2227.CrossRefGoogle Scholar
  125. Gonzalez-Hernandez T, Mantolansa-Mmiento B, Gonzalez-Gonzalez B, Perez-Gonzalez H (1996) Sources of Gabaergic input to the inferior colliculus of the rat. J Comp Neurol 372: 309–326.PubMedCrossRefGoogle Scholar
  126. Grothe B, Sanes DH (1993) Bilateral inhibition by glycinergic afferents in the medial superior olive. J Neurophysiol 69: 1192–1196.PubMedGoogle Scholar
  127. Guido W, Weyand T (1995) Burst responses in thalamic relay cells of the awake behaving cat. J Neurophysiol 74: 1782–1786.PubMedGoogle Scholar
  128. Guillery RW (1995) Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J Anat 187: 583–592.PubMedGoogle Scholar
  129. Guillery RW, Feig SL, Lozsadi DA (1998) Paying attention to the thalamic reticular nucleus. Trends Neurosci 21: 28–32.PubMedCrossRefGoogle Scholar
  130. Guinan JJ Jr, Guinan SS, Norris BE (1972a) Single auditory units in the superior olivary complex. Responses to sounds and classifications based on physiological properties. Int J Neurosci 4: 101–120.CrossRefGoogle Scholar
  131. Guinan JJ Jr, Norris BE, Guinan SS (1972b) Single auditory units in the superior olivary complex: II. Location of unit categories and tonotopic organization. Int J Neurosci 4: 147–166.CrossRefGoogle Scholar
  132. Hackett TA, Stepniewska I, Kaas JH (1998a) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394: 475–495.CrossRefGoogle Scholar
  133. Hackett TA, Stepniewska I, Kaas JH (1998b) Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 400: 271–286.CrossRefGoogle Scholar
  134. Hackney CM, Osen KK, Ottersen OP, Storm-Mathisen J, Manjaly G (1996) Immunocytochemical evidence that glutamate is a neurotransmitter in the cochlear nerve: a quantitative study in the guinea-pig anteroventral cochlear nucleus. Eur J Neurosci 8: 79–91.PubMedCrossRefGoogle Scholar
  135. Harada N, Han DY, Komeda M, Yamashita T (1994) Glutamate-induced intracellular Ca2+ elevation in isolated spiral ganglion cells of the guinea pig cochlea. Acta Otolaryngol 114: 609–612.PubMedCrossRefGoogle Scholar
  136. Hashikawa T, Rausell E, Molinari M, Jones EG (1991) Parvalbumin-and calbindincontaining neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections. Brain Res 544: 335–341.PubMedCrossRefGoogle Scholar
  137. Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362: 195–208.PubMedCrossRefGoogle Scholar
  138. He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. J Neurophysiol 77: 896–908.PubMedGoogle Scholar
  139. He J, Hashikawa T (1998) Connections of the dorsal zone of cat auditory cortex. J Comp Neurol 400: 334–348.PubMedCrossRefGoogle Scholar
  140. He J, Hashikawa T, Ojima H, Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci 17: 2615–2625.PubMedGoogle Scholar
  141. Hefti BJ, Smith PH (2000) Anatomy, physiology and synaptic responses of layer V cells in rat auditory cortex: characterization and study of inhibition through intracellular GABAA blockade. J Neurophysiol 83: 2626–2638.PubMedGoogle Scholar
  142. Helfert RH, Bonneau JM, Wenthold RJ, Altschuler RA (1989) GABA and glycine immunoreactivity in the guinea pig superior olivary complex. Brain Res 501: 269–286.PubMedCrossRefGoogle Scholar
  143. Henkel CK (1983) Evidence of sub-collicular auditory projections to the medial geniculate nucleus in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 259: 21–30.PubMedCrossRefGoogle Scholar
  144. Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304: 103–122.PubMedCrossRefGoogle Scholar
  145. Herkenham M (1980) Laminar organization of thalamic projections to the rat neocortex. Science 207: 532–535.PubMedCrossRefGoogle Scholar
  146. Herman AE, Galaburda AM, Fitch RH, Carter AR, Rosen GD (1997) Cerebral microgyria, thalamic cell size and auditory temporal processing in male and female rats. Cereb Cortex 7: 453–464.PubMedCrossRefGoogle Scholar
  147. Hienz RD, Stiles P, May BJ (1998) Effects of bilateral olivocochlear lesions on vowel formant discrimination in cats. Hear Res 116: 10–20.PubMedCrossRefGoogle Scholar
  148. Hirsch JA (1995) Synaptic integration in layer IV of the ferret striate cortex. J Physiol (Lond) 483: 183–199.Google Scholar
  149. Hirsch JA, Alonso JM, Reid RC, Martinez LM (1998) Synaptic integration in striate cortical simple cells. J Neurosci 18: 9517–9528.PubMedGoogle Scholar
  150. Hoogland PV, Welker E, Van der Loos H (1987) Organization of the projections from barrel cortex to thalamus in mice studied with Phaseolus vulgarisleucoagglutinin and HRP. Exp Brain Res 68: 73–87.PubMedCrossRefGoogle Scholar
  151. Hoogland PV, Wouterlood FG, Welker E, Van der Loos H (1991) Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgarisleuco-agglutinin (PHA-L). Exp Brain Res 87: 159–172.PubMedCrossRefGoogle Scholar
  152. Hu B (1995) Cellular basis of temporal synaptic signalling: an in vitro electrophysiological study in rat auditory thalamus. J Physiol (Lond) 483: 167–182.Google Scholar
  153. Hu B, Senatorov V, Mooney D (1994) Lemnical and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol (Lond) 479: 217–231.Google Scholar
  154. Huang CL, Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol 427: 302–331.PubMedCrossRefGoogle Scholar
  155. Hurd LB, Hutson KA, Morest DK (1999) Cochlear nerve projections to the small cell shell of the cochlear nucleus: The neuroanatomy of extremely thin sensory axons. Synapse 33: 83–117.PubMedCrossRefGoogle Scholar
  156. Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Annu Rev Neurosci 6: 95–120.PubMedCrossRefGoogle Scholar
  157. Imig TJ, Morel A (1984) Topographic and cytoarchitectonic organization of thalamic neurons related to their targets in low-, middle-, and high-frequency representations in cat auditory cortex. J Comp Neurol 227: 511–539.PubMedCrossRefGoogle Scholar
  158. Imig TJ, Morel A (1985a) Tonotopic organization in lateral part of posterior group of thalamic nuclei in the cat. J Neurophysiol 53: 836–851.Google Scholar
  159. Imig TJ, Morel A (1985b) Tonotopic organization in ventral nucleus of medial geniculate body in the cat. J Neurophysiol 53: 309–340.Google Scholar
  160. Isaac JT, Crair MC, Nicoll RA, Malenka RC (1997) Silent synapses during development of thalamocortical inputs. Neuron 18: 269–280.PubMedCrossRefGoogle Scholar
  161. Itoh K, Kaneko T, Kudo M, Mizuno N (1984) The intercollicular region in the cat: a possible relay in the parallel somatosensory pathways from the dorsal column nuclei to the posterior complex of the thalamus. Brain Res 308: 166–171.PubMedCrossRefGoogle Scholar
  162. Jager W, Goiny M, Herrera-Marschitz M, Flock A, Hokfelt T, Brundin L (1998) Sound-evoked efflux of excitatory amino acids in the guinea-pig cochlea in vitro. Exp Brain Res 121: 425–432.PubMedCrossRefGoogle Scholar
  163. Jahnsen H, Llinas R (1984a) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349: 205–226.Google Scholar
  164. Jahnsen H, Llinas R (1984b) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol (Lond) 349: 227–247.Google Scholar
  165. Jen PHS, Chen QC, Sun XD (1998) Corticofugal regulation of auditory sensitivity in the bat inferior colliculus. J Comp Physiol 183: 683–697.CrossRefGoogle Scholar
  166. Jen PHS, Zhang JP (1999) Corticofugal regulation of excitatory and inhibitory frequency tuning curves of bat inferior collicular neurons. Brain Res. 841: 184–188.PubMedCrossRefGoogle Scholar
  167. Jiang H, Lepore F, Ptito M, Guillemot JP (1994) Sensory modality distribution in the anterior ectosylvian cortex (AEC) of cats. Exp Brain Res 97: 404–414.PubMedCrossRefGoogle Scholar
  168. Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91: 11748–11751.PubMedCrossRefGoogle Scholar
  169. Jones EG (1975a) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162: 285–308.CrossRefGoogle Scholar
  170. Jones EG (1975b) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160: 205–267.CrossRefGoogle Scholar
  171. Jones EG (1985) The thalamus. New York: Plenum Press. 425–442.CrossRefGoogle Scholar
  172. Jones EG (1998a) A new view of specific and nonspecific thalamocortical connections. Adv Neurol 77: 49–73.Google Scholar
  173. Jones EG (1998b) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85: 331–345.CrossRefGoogle Scholar
  174. Kaas JH, Hackett TA (1998) Subdivisions of auditory cortex and levels of processing in primates. Audiol Neurootol 3: 73–85.PubMedCrossRefGoogle Scholar
  175. Kaas JH, Hackett TA, Tramo MJ (1999) Auditory processing in primate cerebral cortex. Current Opin Neurobiol 9: 164–170.CrossRefGoogle Scholar
  176. Kadunce DC, Vaughan JW, Wallace MT, Benedek G, Stein BE (1997) Mechanisms of within-and cross-modality suppression in the superior colliculus. J Neurophysiol 78: 2834–2847.PubMedGoogle Scholar
  177. Kasper EM, Larkman AU, Lubke J, Blakemore C (1994) Pyramidal neurons in layer 5 of the rat visual cortex. I. Correlation among cell morphology, intrinsic electrophysiological properties, and axon targets. J Comp Neurol 339: 459–474.PubMedCrossRefGoogle Scholar
  178. Katz LC, Gilbert CD, Wiesel TN (1989) Local circuits and ocular dominance columns in monkey striate cortex. J Neurosci 9: 1389–1399.PubMedGoogle Scholar
  179. Kawase T, Liberman MC (1992) Spatial organization of the auditory nerve according to spontaneous discharge rate. J Comp Neurol 319: 312–318.PubMedCrossRefGoogle Scholar
  180. Keats BJ, Berlin CI (1999) Genomics and hearing impairment. Genome Res 9: 7–16.PubMedGoogle Scholar
  181. Kelly JB, Judge PW (1985) Effects of medial geniculate lesions on sound localization by the rat. J Neurophysiol 53: 361–372.PubMedGoogle Scholar
  182. Kelly JB, Liscum A, Vanadel B, Ito M (1998) Projections from the superior olive and lateral lemniscus to tonotopic regions of the rats inferior colliculus. Hear Res 116: 43–54.PubMedCrossRefGoogle Scholar
  183. Kelly JP, Wong D (1981) Laminar connections of the cat’s auditory cortex. Brain Res 212: 1–15.PubMedCrossRefGoogle Scholar
  184. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387: 80–83.PubMedCrossRefGoogle Scholar
  185. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea:Google Scholar
  186. immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118. Kilgard MP, Merzenich MM (1998) Plasticity of temporal information processing in the primary auditory cortex. Nat Neurosci 1:727–731.Google Scholar
  187. King AJ, Jiang ZD, Moore DR (1998) Auditory brainstem projections to the ferret superior colliculus: anatomical contribution to the neural coding of sound azimuth. J Comp Neurol 390: 342–365.PubMedCrossRefGoogle Scholar
  188. King AJ, Palmer AR (1985) Integration of visual and auditory information in bimodal neurones in the guinea-pig superior colliculus. Exp Brain Res 60: 492–500.PubMedCrossRefGoogle Scholar
  189. King C, McGee T, Rubel EW, Nicol T, Kraus N (1995) Acoustic features and acoustic changes are represented by different central pathways. Hear Res 85: 45–52.PubMedCrossRefGoogle Scholar
  190. Klinke R, Kral A, Heid S, Tillein J, Hartmann R (1999) Recruitment of the auditory cortex in congenitally deaf cats by long-term cochlear electrostimulation. Science 285: 1729–1733.PubMedCrossRefGoogle Scholar
  191. Klintsova AY, Greenough WT (1999) Synaptic plasticity in cortical systems. Curr Opin Neurobiol 9: 203–208.PubMedCrossRefGoogle Scholar
  192. Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2: 1177–1194.PubMedGoogle Scholar
  193. Knudsen EI, Knudsen PF (1983) Space-mapped auditory projections from the inferior colliculus to the optic tectum in the barn owl (Tyto alba). J Comp Neurol 218: 187–196.PubMedCrossRefGoogle Scholar
  194. Knudsen EI, Konishi M (1978) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41: 870–884.PubMedGoogle Scholar
  195. Kraus N, McGee T, Carrell T, King C, Littman T, Nicol T (1994a) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96: 2758–2768.CrossRefGoogle Scholar
  196. Kraus N, McGee T, Littman T, Nicol T, King C (1994b) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72: 1270–1277.Google Scholar
  197. Kraus N, McGee T, Carrell T, Zecker S, Nicol T, Koch D (1996) Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science 273: 971–973.PubMedCrossRefGoogle Scholar
  198. Kudo M, Itoh K, Kawamura S, Mizuno N (1983) Direct projections to the pretecturn and the midbrain reticular formation from auditory relay nuclei in the lower brainstem of the cat. Brain Res 288: 13–19.PubMedCrossRefGoogle Scholar
  199. Kudo M, Niimi K (1980) Ascending projections of the inferior colliculus in the cat: an autoradiographic study. J Comp Neurol 191: 545–556.PubMedCrossRefGoogle Scholar
  200. Kudo M, Tashiro T, Higo S, Matsuyama T, Kawamura S (1984) Ascending projections from the nucleus of the brachium of the inferior colliculus in the cat. Exp Brain Res 54: 203–211.PubMedCrossRefGoogle Scholar
  201. Kudoh M, Shibuki K (1994) Long-term potentiation in the auditory cortex of adult rats. Neurosci Lett 171: 21–23.PubMedCrossRefGoogle Scholar
  202. Kudoh M, Shibuki K (1996) Long-term potentiation of supragranular pyramidal outputs in the rat auditory cortex. Exp Brain Res 110: 21–27.PubMedCrossRefGoogle Scholar
  203. Kudoh M, Shibuki K (1997a) Comparison of long-term potentiation between the auditory and visual cortices. Acta Otolaryngol Suppl 532: 109–111.CrossRefGoogle Scholar
  204. Kudoh M, Shibuki K (1997b) Importance of polysynaptic inputs and horizontal connectivity in the generation of tetanus-induced long-term potentiation in the rat auditory cortex. J Neurosci 17: 9458–9465.Google Scholar
  205. Kujawa SG, Liberman MC (1997) Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol 78: 3095–3106.PubMedGoogle Scholar
  206. Kulesza R, Holt A, Spirou G, Berrebi A (2000) Intracellular labeling of axonal col-laterals of SPON neurons. Assoc Res Otolaryngol 23: 37.Google Scholar
  207. Kulesza RJ, Berrebi AS (1999) Distribution of GAD isoforms in the superior paraolivary nucleus (SPON) of the rat. Assoc Res Otolaryngol 22: 70.Google Scholar
  208. Kulesza RJ, Berrebi AS (2000) The superior paraolivary nucleus of the rat is a GABAergic nucleus. J Assoc Res Otolaryngol 1: 255–269.PubMedCrossRefGoogle Scholar
  209. Kuwabara N (1999) Multiple descending projections to the ventral nucleus of the trapezoid body. Assoc Res Otolaryngol 22: 148.Google Scholar
  210. Kuwabara N, Zook JM (1991) Classification of the principal cells of the medial nucleus of the trapezoid body. J Comp Neurol 314: 707–720.PubMedCrossRefGoogle Scholar
  211. Kuwabara N, Zook JM (1992) Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J Comp Neurol 324: 522–538.PubMedCrossRefGoogle Scholar
  212. Kuwabara N, Zook JM (1999) Local collateral projections from the medial superior olive to the superior paraolivary nucleus in the gerbil. Brain Res 846: 59–71.PubMedCrossRefGoogle Scholar
  213. Kuwabara N, DiCaprio RA, Zook JM (1991) Afferents to the medial nucleus of the trapezoid body and their collateral projections. J Comp Neurol 314: 684–706.PubMedCrossRefGoogle Scholar
  214. Lautermann J, Frank HG, Jahnke K, Traub O, Winterhager E (1999) Developmental expression patterns of connexin26 and-30 in the rat cochlea. Dev Genet 25: 306–311.PubMedCrossRefGoogle Scholar
  215. Lautermann J, Tencate WJF, Altenhoff P, Grummer R, Traub O, Frank HG, Jahnke K, Winterhager E (1998) Expression of the gap-junction connexins 26 and 30 in the rat cochlea. Cell Tissue Res 294: 415–420.PubMedCrossRefGoogle Scholar
  216. Leake PA, Snyder RL (1989) Topographic organization of the central projections of the spiral ganglion in cats. J Comp Neurol 281: 612–629.PubMedCrossRefGoogle Scholar
  217. Leake PA, Snyder RL, Merzenich MM (1992) Topographic organization of the cochlear spiral ganglion demonstrated by restricted lesions of the anteroventral cochlear nucleus. J Comp Neurol 320: 468–478.PubMedCrossRefGoogle Scholar
  218. LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235. Ledoux JE, Muller J (1997) Emotional memory and psychopathology. Phil Trans Royal Soc B: Biological Sciences 352: 1719–1726.Google Scholar
  219. LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1986) Interruption of projections from the medial geniculate body to an archi-neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli. Neuroscience 17: 615–627.PubMedCrossRefGoogle Scholar
  220. Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264: 123–146.PubMedCrossRefGoogle Scholar
  221. LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8: 2517–2529.PubMedGoogle Scholar
  222. LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990a) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10: 1062–1069.Google Scholar
  223. LeDoux JE, Farb C, Ruggiero DA (1990b) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10: 1043–1054.Google Scholar
  224. LeDoux JE, Farb CR, Milner TA (1991) Ultrastructure and synaptic associations of auditory thalamo-amygdala projections in the rat. Exp Brain Res 85: 577–586.PubMedCrossRefGoogle Scholar
  225. Lenarz T (1999) Sensorineural hearing loss in children. Int J Ped Otorhinolaryngol 49: 179–181.CrossRefGoogle Scholar
  226. LeVay S (1973) Synaptic patterns in the visual cortex of the cat and monkey. Electron microscopy of Golgi preparations. J Comp Neurol 150: 53–85.PubMedCrossRefGoogle Scholar
  227. LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113: 1–19.PubMedCrossRefGoogle Scholar
  228. Li XF, Phillips R, LeDoux JE (1995) NMDA and non-NMDA receptors contribute to synaptic transmission between the medial geniculate body and the lateral nucleus of the amygdala. Exp Brain Res 105: 87–100.PubMedCrossRefGoogle Scholar
  229. Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216: 1239–1241.PubMedCrossRefGoogle Scholar
  230. Liberman MC (1988) Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. J Neurophysiol 60: 1779–1798.PubMedGoogle Scholar
  231. Liberman MC (1991a) Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. J Comp Neurol 313: 240–258.CrossRefGoogle Scholar
  232. Liberman MC (1991b) The olivocochlear efferent bundle and susceptibility of the inner ear to acoustic injury. J Neurophysiol 65: 123–132.Google Scholar
  233. Liberman MC (1993) Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. J Comp Neurol 327: 17–36.PubMedCrossRefGoogle Scholar
  234. Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24: 17–36.PubMedCrossRefGoogle Scholar
  235. Liberman MC, Gao WY (1995) Chronic cochlear de-efferentation and susceptibility to permanent acoustic injury. Hear Res 90: 158–168.PubMedCrossRefGoogle Scholar
  236. Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy [published erratum appears in J Comp Neurol 1991 Feb 8;304(2):341]. J Comp Neurol 301: 443–460.Google Scholar
  237. Linke R, De Lima AD, Schwegler H, Pape HC (1999) Direct synaptic connections of axons from superior colliculus with identified thalamo-amygdaloid projection neurons in the rat: possible substrates of a subcortical visual pathway to the amygdala. J Comp Neurol 403: 158–170.PubMedCrossRefGoogle Scholar
  238. Liu XB, Warren RA, Jones EG (1995) Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp Neurol 352: 187–202.PubMedCrossRefGoogle Scholar
  239. Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291: 554–561.PubMedCrossRefGoogle Scholar
  240. Llinas R, Ribary U (1993) Coherent 40-Hz oscillation characterizes dream state in humans. Proc Natl Acad Sci USA 90: 2078–2081.PubMedCrossRefGoogle Scholar
  241. Lund JS (1984) Spiny stellate neurons. In: Jones EG, Peters A (eds) The cerebral cortex, pp. 255–308. New York: Plenum Press.Google Scholar
  242. Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF (1975) The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 164: 287–303.PubMedCrossRefGoogle Scholar
  243. Macdonald KD, Fifkova E, Jones MS, Barth DS (1998) Focal stimulation of the thalamic reticular nucleus induces focal gamma waves in cortex. J Neurophysiol 79: 474–477.PubMedGoogle Scholar
  244. Malmierca MS, Rees A, LeBeau FEN (1997) Ascending projections to the medial geniculate body from physiologically identified loci in the inferior colliculus. In: Syka J (ed) Acoustic signal processing in the central auditory system, pp. 295–302. New York: Plenum.CrossRefGoogle Scholar
  245. Maren S (1999) Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J Neurosci 19: 8696–8703.PubMedGoogle Scholar
  246. Martin KA, Whitteridge D (1984) Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat. J Physiol (Lond) 353: 463–504.Google Scholar
  247. May BJ, McQuone SJ, Lavoie A (1995) Effects of olivocochlear lesions on intensity discrimination in cats. Assoc Res Otolaryngol 18: 581.Google Scholar
  248. McCormick DA, Von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Natl Acad Sci USA 89: 2774–2778.PubMedCrossRefGoogle Scholar
  249. McEchron MD, Green EJ, Winters RW, Nolen TG, Schneiderman N, McCabe PM (1996) Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. J Neurosci 16: 1273–1283.PubMedGoogle Scholar
  250. McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390: 607–611.PubMedCrossRefGoogle Scholar
  251. McMullen NT, De Venecia RK (1993) Thalamocortical patches in auditory neocortex. Brain Res 620: 317–322.PubMedCrossRefGoogle Scholar
  252. McMullen NT, Glaser EM (1982) Morphology and laminar distribution of non-pyramidal neurons in the auditory cortex of the rabbit. J Comp Neurol 208: 85–106.PubMedCrossRefGoogle Scholar
  253. Merchan-Perez A, Liberman MC (1996) Ultrastructural differences among afferent synapses on cochlear hair cells: correlations with spontaneous discharge rate. J Comp Neurol 371: 208–221.PubMedCrossRefGoogle Scholar
  254. Meredith MA, Clemo HR (1989) Auditory cortical projection from the anterior ectosylvian sulcus (Field AES) to the superior colliculus in the cat: an anatomical and electrophysiological study. J Comp Neurol 289: 687–707.PubMedCrossRefGoogle Scholar
  255. Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75: 1843–1857.PubMedGoogle Scholar
  256. Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271: 77–81.PubMedCrossRefGoogle Scholar
  257. Metherate R, Aramakis VB (1999) Intrinsic electrophysiology of neurons in thalamorecipient layers of developing rat auditory cortex. Brain Research. Devel Brain Res 115: 131–144.CrossRefGoogle Scholar
  258. Meyer G, Gonzalez-Hernandez TH, Ferres-Torres R (1989) The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study. Neuroscience 33: 489–498.PubMedCrossRefGoogle Scholar
  259. Middlebrooks JC, Knudsen EI (1984) A neural code for auditory space in the cat’s superior colliculus. J Neurosci 4: 2621–2634.PubMedGoogle Scholar
  260. Middlebrooks JC, Zook JM (1983) Intrinsic organization of the cat’s medial geniculate body identified by projections to binaural response-specific bands in the primary auditory cortex. J Neurosci 3: 203–224.PubMedGoogle Scholar
  261. Mitani A, Shimokouchi M (1985) Neuronal connections in the primary auditory cortex: an electrophysiological study in the cat. J Comp Neurol 235: 417–429.PubMedCrossRefGoogle Scholar
  262. Mitani A, Shimokouchi M, Nomura S (1983) Effects of stimulation of the primary auditory cortex upon colliculogeniculate neurons in the inferior colliculus of the cat. Neurosci Lett 42: 185–189.PubMedCrossRefGoogle Scholar
  263. Mitani A, Itoh K, Nomura S, Kudo M, Kaneko T, Mizuno N (1984) Thalamocortical projections to layer 1 of the primary auditory cortex in the cat: a horseradish peroxidase study. Brain Res 310: 347–350.PubMedCrossRefGoogle Scholar
  264. Mitani A, Shimokouchi M, Itoh K, Nomura S, Kudo M, Mizuno N (1985) Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. J Comp Neurol 235: 430–447.PubMedCrossRefGoogle Scholar
  265. Mitani A, Itoh K, Mizuno N (1987) Distribution and size of thalamic neurons projecting to layer I of the auditory cortical fields of the cat compared to those projecting to layer IV. J Comp Neurol 257: 105–121.PubMedCrossRefGoogle Scholar
  266. Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev 65: 37–100.PubMedGoogle Scholar
  267. Mitzdorf U (1991) Physiological sources of evoked potentials. Electroenceph Clin Neurophysiol Suppl 42: 47–57.Google Scholar
  268. Mitzdorf U, Singer W (1979) Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: a current source density analysis of electrically evoked potentials. J Comp Neurol 187: 71–83.PubMedCrossRefGoogle Scholar
  269. Molinari M, Dell’Anna ME, Rausell E, Leggio MG, Hashikawa T, Jones EG (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. J Comp Neurol 362: 171–194.PubMedCrossRefGoogle Scholar
  270. Montero VM (1983) Ultrastructural identification of axon terminals from the thalamic reticular nucleus in the medial geniculate body of the rat: An EM autoradiogrtaphic study. Exp Brain Res 51: 338–342.CrossRefGoogle Scholar
  271. Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335: 437–459.PubMedCrossRefGoogle Scholar
  272. Morest DK (1968) The collataral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relationship to the olivo-cochlear bundle. Brain Res 9: 288–311.PubMedCrossRefGoogle Scholar
  273. Morgan YV, Ryugo DK, Brown MC (1994) Central trajectories of type II (thin) fibers of the auditory nerve in cats. Hear Res 79: 74–82.PubMedCrossRefGoogle Scholar
  274. Morley BJ, Li HS, Hiel H, Drescher DG, Elgoyhen AB (1998) Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Brain Res Mol Brain Res 53: 78–87.PubMedCrossRefGoogle Scholar
  275. Morton NE (1991) Genetic epidemiology of hearing impairment. Ann N Y Acad Sci 630: 16–31.PubMedCrossRefGoogle Scholar
  276. Mucke L, Norita M, Benedek G, Creutzfeldt O (1982) Physiologic and anatomic investigation of a visual cortical area situated in the ventral bank of the anterior ectosylvian sulcus of the cat. Exp Brain Res 46: 1–11.PubMedCrossRefGoogle Scholar
  277. Mulders WH, Robertson D (2000) Evidence for direct cortical innervation of medial olivocochlear neurons in rats. Hear Res 144: 65–72.PubMedCrossRefGoogle Scholar
  278. Nagarajan S, Mahncke H, Salz T, Tallai P, Roberts T, Merzenich MM (1999) Cortical auditory signal processing in poor readers. Proc Nat Acad Sci USA 96: 6483–6488.PubMedCrossRefGoogle Scholar
  279. Nagarajan SS, Wang X, Merzenich MM, Schreiner CE, Johnston P, Jenkins WM, Miller S, Tallai P (1998) Speech modifications algorithms used for training language learning-impaired children. IEEE Trans Rehabil Eng 6: 257–268.PubMedCrossRefGoogle Scholar
  280. Niimi K, Ono K, Kusunose M (1984) Projections of the medial geniculate nucleus to layer 1 of the auditory cortex in the cat traced with horseradish peroxidase. Neurosci Lett 45: 223–228.PubMedCrossRefGoogle Scholar
  281. Nishimura H, Hashikawa K, Doi K, Iwaki T, Watanabe Y, Kusuoka H, Nishimura T, Kubo T (1999) Sign language “heard” in the auditory cortex. Nature 397: 116.PubMedCrossRefGoogle Scholar
  282. Nordang L, Cestreicher E, Arnold W, Anniko, M (2000) Glutamate is the afferent neurotransmitter in the human cochlea. Acta Otolaryngol 120: 359–362.PubMedCrossRefGoogle Scholar
  283. Ohara PT, Lieberman AR (1985) The thalamic reticular nucleus of the adult rat: experimental anatomical studies. J Neurocytol 14: 365–411.PubMedCrossRefGoogle Scholar
  284. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N (1993a) Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53: 1009–1018.CrossRefGoogle Scholar
  285. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N (1993b) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol 335: 252–266.CrossRefGoogle Scholar
  286. Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4: 646–663.PubMedCrossRefGoogle Scholar
  287. Ojima H, He JF (1997) Cortical convergence originating from domains represent- ing different frequencies in the cat AI. Acta Otolaryngolog Suppl 532: 126–128.CrossRefGoogle Scholar
  288. Ojima H, Honda CN, Jones EG (1991) Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cereb Cortex 1: 80–94.PubMedCrossRefGoogle Scholar
  289. Ojima H, Honda CN, Jones EG (1992) Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. Cereb Cortex 2: 197–216.PubMedCrossRefGoogle Scholar
  290. Oliver DL (1984) Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience 11: 409–424.PubMedCrossRefGoogle Scholar
  291. Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340: 27–42.PubMedCrossRefGoogle Scholar
  292. Oliver D, Klonker N, Schuck J, Baukrowitz T, Ruppersberg JP, Fakler (2000) Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26: 595–601.PubMedCrossRefGoogle Scholar
  293. Olson CR, Graybiel AM (1987) Ectosylvian visual area of the cat: location, retinotopic organization, and connections. J Comp Neurol 261: 277–294.PubMedCrossRefGoogle Scholar
  294. Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42: 475–482.PubMedCrossRefGoogle Scholar
  295. Ostapoff EM, Morest DK, Potashner SJ (1990) Uptake and retrograde transport of [3H]GABA from the cochlear nucleus to the superior olive in the guinea pig. J Chem Neuroanat 3: 285–295.PubMedGoogle Scholar
  296. Ostapoff EM, Benson CG, Saint Marie RL (1997a) GABA- and glycineimmunoreactive projections from the superior olivary complex to the cochlear nucleus in guinea pig. J Comp Neurol 381: 500–512.CrossRefGoogle Scholar
  297. Ostapoff EM, Benson CG, Saintmarie RL (1997b) Gaba-and glycineimmunoreactive projections from the superior olivary complex to the cochlear nucleus in guinea pig. J Comp Neurol 381: 500–512.CrossRefGoogle Scholar
  298. Ota Y, Dolan DF (1999) Localized electrical stimulation of the inferior colliculus produces frequency specific reductions in the cochlear whole-nerve action potential. Assoc Res Otolaryngol 22: 210.Google Scholar
  299. Pallas SL, Sur M (1994) Morphology of retinal axon arbors induced to arborize in a novel target, the medial geniculate nucleus. II. Comparison with axons from the inferior colliculus. J Comp Neurol 349: 363–376.PubMedCrossRefGoogle Scholar
  300. Pandya DN (1995) Anatomy of the auditory cortex. Rev Neurol (Paris) 151: 486–494.Google Scholar
  301. Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17: 3766–3777.PubMedGoogle Scholar
  302. Pinault D, Deschenes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10: 3462–3469.PubMedCrossRefGoogle Scholar
  303. Ponton CW, Moore JK, Eggermont JJ (1999) Prolonged deafness limits auditory system developmental plasticity: evidence from an evoked potentials study in children with cochlear implants. Scand Audiol 28: 13–22.Google Scholar
  304. Popper AN, Fay RR (Eds) (1992) Springer Handbook of Auditory Research. New York: Springer-Verlag.Google Scholar
  305. Quirk GJ, Repa C, LeDoux JE (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15: 1029–1039.PubMedCrossRefGoogle Scholar
  306. Rabionet R, Gasparini P, Estivill X (2000) Molecular genetics of hearing impairment due to mutations in gap junction genes encoding beta connexins. Hum Mutat 16: 190–202.PubMedCrossRefGoogle Scholar
  307. Rajan R (1995) Involvement of cochlear efferent pathways in protective effects elicited with binaural loud sound exposure in cats. J Neurophysiol 74: 582–597.PubMedGoogle Scholar
  308. Rajan R (1996) Additivity of loud-sound-induced threshold losses in the cat under conditions of active or inactive cochlear efferent-mediated protection. J Neurophysiol 75: 1601–1618.PubMedGoogle Scholar
  309. Rajan R, Irvine DR (1998) Neuronal responses across cortical field Al in plasticity induced by peripheral auditory organ damage. Audiol Neurootol 3: 123–144.PubMedCrossRefGoogle Scholar
  310. Rajan R, Johnstone BM (1988) Binaural acoustic stimulation exercises protective effects at the cochlea that mimic the effects of electrical stimulation of an auditory efferent pathway. Brain Res 459: 241–255.PubMedCrossRefGoogle Scholar
  311. Rajan R, Irvine DR, Wise LZ, Heil P (1993) Effect of unilateral partial cochlear lesions in adult cats on the representation of lesioned and unlesioned cochleas in primary auditory cortex. J Comp Neurol 338: 17–49.PubMedCrossRefGoogle Scholar
  312. Rauschecker JP (1995) Developmental plasticity and memory. Behav Brain Res 66: 7–12.PubMedCrossRefGoogle Scholar
  313. Rauschecker JP (1996) Substitution of visual by auditory inputs in the cat’s anterior ectosylvian cortex. Prog Brain Res 112: 313–323.PubMedCrossRefGoogle Scholar
  314. Rauschecker JP (1997) Processing of complex sounds in the auditory cortex of cat, monkey, and man. Acta Otolaryngolog Suppl 532: 34–38.CrossRefGoogle Scholar
  315. Rauschecker JP (1998) Parallel processing in the auditory cortex of primates. Audiol Neurootol 3: 86–103.PubMedCrossRefGoogle Scholar
  316. Rauschecker JP (1999) Auditory cortical plasticity: a comparison with other sensory systems. Trends Neurosci 22: 74–80.PubMedCrossRefGoogle Scholar
  317. Rauschecker JP, Korte M (1993) Auditory compensation for early blindness in cat cerebral cortex. J Neurosci 13: 4538–4548.PubMedGoogle Scholar
  318. Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382: 89–103.PubMedCrossRefGoogle Scholar
  319. Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13: 87–103.PubMedGoogle Scholar
  320. Reinagel P, Godwin D, Sherman SM, Koch C (1999) Encoding of visual information by LGN bursts. J Neurophysiol 81: 2558–2569.PubMedGoogle Scholar
  321. Reuss S, Disque-Kaiser U, De Liz S, Ruffer M, Riemann R (1999) Immunfluorescence study of neuropeptides in identified neurons of the rat auditory superior olivary complex. Cell Tis Res 297: 13–21.CrossRefGoogle Scholar
  322. Riemann R, Reuss S (1998) Projection neurons in the superior olivary complex of the rat auditory brainstem: a double retrograde tracing study. J of Otorhinolaryngol 60: 278–282.Google Scholar
  323. Robertson D (1996) Physiology and morphology of cells in the ventral nucleus of the trapezoid body and rostral periolivary regions of the rat superior olivary complex studied in slices. Aud Neurosci 2: 15–32.Google Scholar
  324. Robertson D, Gummer M (1985) Physiological and morphological characterization of efferent neurones in the guinea pig cochlea. Hear Res 20: 63–77.PubMedCrossRefGoogle Scholar
  325. Robertson D, Irvine DR (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282: 456–471.PubMedCrossRefGoogle Scholar
  326. Robinson K (1998) Implications of developmental plasticity for the language acquisition of deaf children with cochlear implants. Int J Pediatr Otorhinolaryngol 46: 71–80.PubMedCrossRefGoogle Scholar
  327. Rodrigues-Dagaeff C, Simm G, De Ribaupierre Y, Villa A, De Ribaupierre F, Rouiller EM (1989) Functional organization of the ventral division of the medial geniculate body of the cat: evidence for a rostro-caudal gradient of response properties and cortical projections. Hear Res 39: 103–125.PubMedCrossRefGoogle Scholar
  328. Rogan MT, LeDoux JE (1995) LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15: 127–136.PubMedCrossRefGoogle Scholar
  329. Rogan MT, Staubli UV, LeDoux JE (1997) AMPA receptor facilitation accelerates fear learning without altering the level of conditioned fear acquired. J Neurosci 17: 5928–5935.PubMedGoogle Scholar
  330. Rose JE (1949) The cellular structure of the auditory region of the cat. J Comp Neurol 91: 409–440.PubMedCrossRefGoogle Scholar
  331. Rouiller EM, Welker E (1991) Morphology of corticothalamic terminals arising from the auditory cortex of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. Hear Res 56: 179–190.PubMedCrossRefGoogle Scholar
  332. Rouiller EM, Colomb E, Capt M, De Ribaupierre F (1985) Projections of the reticular complex of the thalamus onto physiologically characterized regions of the medial geniculate body. Neurosci Lett 53: 227–232.PubMedCrossRefGoogle Scholar
  333. Rouiller EM, Cronin-Schreiber R, Fekete DM, Ryugo DK (1986) The central projections of intracellularly labeled auditory nerve fibers in cats: an analysis of terminal morphology. J Comp Neurol 249: 261–278.PubMedCrossRefGoogle Scholar
  334. Rouiller EM, Hornung JP, De Ribaupierre F (1989) Extrathalamic ascending projections to physiologically identified fields of the cat auditory cortex. Hear Res 40: 233–246.PubMedCrossRefGoogle Scholar
  335. Ryugo DK (1992) The auditory nerve: Peripheral innervation, cell body morphology and central projections. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: Neuroanatomy, pp. 23–65. New York: Springer-Verlag.CrossRefGoogle Scholar
  336. Ryugo DK, May SK (1993) The projections of intracellularly labeled auditory nerve fibers to the dorsal cochlear nucleus of cats. J Comp Neurol 329: 20–35.PubMedCrossRefGoogle Scholar
  337. Ryugo DK, Rouiller EM (1988) Central projections of intracellularly labeled auditory nerve fibers in cats: morphometric correlations with physiological properties. J Comp Neurol 271: 130–142.PubMedCrossRefGoogle Scholar
  338. Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51: 377–391.PubMedCrossRefGoogle Scholar
  339. Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol 22: 275–301.PubMedCrossRefGoogle Scholar
  340. Ryugo DK, Dodds LW, Benson TE, Kiang NY (1991) Unmyelinated axons of the auditory nerve in cats. J Comp Neurol 308: 209–223.PubMedCrossRefGoogle Scholar
  341. Ryugo DK, Wu MM, Pongstaporn T (1996) Activity-related features of synapse morphology: a study of endbulbs of held. J Comp Neurol 365: 141–158.PubMedCrossRefGoogle Scholar
  342. Saint Marie RL (1996) Glutamatergic connections of the auditory midbrain: selective uptake and axonal transport of D-[3H]aspartate. J Comp Neurol 373: 255270.Google Scholar
  343. Saint Marie RL, Baker RA (1990) Neurotransmitter-specific uptake and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral projections of the superior olivary complex and nuclei of the lateral lemniscus. Brain Res 524: 244–253.CrossRefGoogle Scholar
  344. Saint Marie RL, Stanforth DA, Jubelier EM (1997) Substrate for rapid feedforward inhibition of the auditory forebrain. Brain Res 765: 173–176.CrossRefGoogle Scholar
  345. Saint Marie RL, Luo L, Ryan AF (1999) Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404: 258–270.CrossRefGoogle Scholar
  346. Saldana E, Berrebi AS (2000) Anisotropic organization of the rat superior paraolivary nucleus. Anat Embryol 202: 265–279.PubMedCrossRefGoogle Scholar
  347. Saldana E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371: 15–40.PubMedCrossRefGoogle Scholar
  348. Sanes DH (1990) An in vitro analysis of sound localization mechanisms in the gerbil lateral superior olive. J Neurosci 10: 3494–3506.PubMedGoogle Scholar
  349. Sato A, Ohtsuka K (1996) Projection from the accommodation-related area in the superior colliculus of the cat. J Comp Neurol 367: 465–476.PubMedCrossRefGoogle Scholar
  350. Scates KW, Woods CI, Azeredo WJ (1999) Inferior colliculus stimulation and changes in 2f(1)-f(2) distortion product otoacoustic emissions in the rat. Hear Res 128: 51–60.PubMedCrossRefGoogle Scholar
  351. Schnupp JWH, King AJ (1997) Coding for auditory space in the nucleus of the brachium of the inferior colliculus in the ferret. J Neurophysiol 78: 2717–2731.PubMedGoogle Scholar
  352. Schofield BR (1995) Projections from the cochlear nucleus to the superior paraolivary nucleus in guinea pigs. J Comp Neurol 360: 135–149.PubMedCrossRefGoogle Scholar
  353. Schofield BR, Cant NB (1992) Organization of the superior olivary complex in the guinea pig: II. Patterns of projection from the periolivary nuclei to the inferior colliculus. J Comp Neurol 317: 438–455.PubMedCrossRefGoogle Scholar
  354. Schofield BR, Cant NB (1999) Descending auditory pathways: Projections from the inferior colliculus contact superior olivary cells that project bilaterally to the cochlear nuclei. J Comp Neurol 409: 210–223.PubMedCrossRefGoogle Scholar
  355. Schwaber MK, Garraghty PE, Kaas JH (1993) Neuroplasticity of the adult primate auditory cortex following cochlear hearing loss. Am J Otol 14: 252–258.PubMedGoogle Scholar
  356. Schwartz IR (1992) The superior olivary complex and lateral lemnisal nuclei. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: Neuroanatomy, pp. 117–167. New York: Springer-Verlag.CrossRefGoogle Scholar
  357. Sento S, Ryugo DK (1989) Endbulbs of held and spherical bushy cells in cats: morphological correlates with physiological properties. J Comp Neurol 280: 553–562.PubMedCrossRefGoogle Scholar
  358. Shammah-Lagnado SJ, Alheid GF, Heimer L (1996) Efferent connections of the caudal part of the globus pallidus in the rat. J Comp Neurol 376: 489–507.PubMedCrossRefGoogle Scholar
  359. Sharma J, Angelucci A, Sur M (2000) Induction of visual orientation modules in auditory cortex. Nature 404: 841–847.PubMedCrossRefGoogle Scholar
  360. Shaywitz SE (1996) Dyslexia. Sci Am 275: 98–104.Google Scholar
  361. Shaywitz SE (1998) Dyslexia. N Engl J Med 338: 307–312.Google Scholar
  362. Shepherd RK, Hartmann R, Heid S, Hardie N, Klinke R (1997) The central auditory system and auditory deprivation: experience with cochlear implants in the congenitally deaf. Acta Otolaryngol Suppl 532: 28–33.PubMedCrossRefGoogle Scholar
  363. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76: 1367–1395.PubMedGoogle Scholar
  364. Sherriff FE, Henderson Z (1994) Cholinergic neurons in the ventral trapezoid nucleus project to the cochlear nuclei in the rat. Neuroscience 58: 627–633.PubMedCrossRefGoogle Scholar
  365. Shinonaga Y, Takada M, Ogawa-Meguro R, Ikai Y, Mizuno N (1992) Direct projections from the globus pallidus to the midbrain and pons in the cat. Neurosci Lett 135: 179–183.PubMedCrossRefGoogle Scholar
  366. Shosaku A, Sumitomo I (1983) Auditory neurons in the rat thalamic reticular nucleus. Exp Brain Res 49: 432–442.PubMedCrossRefGoogle Scholar
  367. Simm GM, de Ribaupierre F, de Ribaupierre Y, Rouiller EM (1990) Discharge properties of single units in auditory part of reticular nucleus of thalamus in cat. J Neurophysiol 63: 1010–1021.PubMedGoogle Scholar
  368. Simons DJ, Woolsey TA (1984) Morphology of Golgi-Cox-impregnated barrel neurons in rat SmI cortex. J Comp Neurol 230: 119–132.PubMedCrossRefGoogle Scholar
  369. Smith PH, Populin LC (2001) Fundamental differences in the thalamocortical recipient layer of the cat auditory and visual cortices. J Comp Neurol 436: 508–519.PubMedCrossRefGoogle Scholar
  370. Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282: 595–616.PubMedCrossRefGoogle Scholar
  371. Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304: 387–407.PubMedCrossRefGoogle Scholar
  372. Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331: 245–260.PubMedCrossRefGoogle Scholar
  373. Snyder RL, Leake PA, Hradek GT (1997) Quantitative analysis of spiral ganglion projections to the cat cochlear nucleus. J Comp Neurol 379: 133–149.PubMedCrossRefGoogle Scholar
  374. Sobkowicz HM, Slapnick SM, Nitecka LM, August BK (1998) Tunnel crossing fibers and their synaptic connections within the inner hair cell region in the Organ of Corti in the maturing mouse. Anat Embryol 198: 353–370.PubMedCrossRefGoogle Scholar
  375. Sommer I, Lingenhohl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95: 223–239.PubMedCrossRefGoogle Scholar
  376. Somogyi P, Tamas G, Lujan R, Buhl EH (1998) Salient features of synaptic organisation in the cerebral cortex. Brain Res Rev 26: 113–135.PubMedCrossRefGoogle Scholar
  377. Spirou GA (1999) Convergence of auditory nerve projections onto globular bushy cells. Assoc Res Otolaryngol 22: 147.Google Scholar
  378. Spirou GA, Berrebi AS (1996) Organization of ventrolateral periolivary cells of the cat superior olive as revealed by PEP-19 immunocytochemistry and Nissl stain. J Comp Neurol 368: 100–120.PubMedCrossRefGoogle Scholar
  379. Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63: 1169–1190.PubMedGoogle Scholar
  380. Spirou GA, Walker MP, Berrebi AS (1995) Connectivity of the lateral nucleus of the trapezoid body in cats. Assoc Res Otolaryngol 18: 155.Google Scholar
  381. Spirou GA, Rowland KC, Berrebi AS (1998) Ultrastructure of neurons and large synaptic terminals in the lateral nucleus of the trapezoid body of the cat. J Comp Neurol 398: 257–272.PubMedCrossRefGoogle Scholar
  382. Spreafico R, de Curtis M, Frassoni C, Avanzini G (1988) Electrophysiological characteristics of morphologically identified reticular thalamic neurons from rat slices. Neuroscience 27: 629–638.PubMedCrossRefGoogle Scholar
  383. Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15: 3667–3678.PubMedGoogle Scholar
  384. Steel KP, Bussoli TJ (1999) Deafness genes—expressions of surprise. Trends in Genet 15: 207–211.CrossRefGoogle Scholar
  385. Stein BE (1998) Neural mechanisms for synthesizing sensory information and producing adaptive behaviors. Exp Brain Res 123: 124–135.PubMedCrossRefGoogle Scholar
  386. Steinschneider M, Tenke CE, Schroeder CE, Javitt DC, Simpson GV, Arezzo JC, Vaughan HG, Jr. (1992) Cellular generators of the cortical auditory evoked potential initial component. Electroenceph Clin Neurophysiol 84: 196–200.PubMedCrossRefGoogle Scholar
  387. Steriade M (1998) Corticothalamic networks, oscillations, and plasticity. Adv Neurol 77: 105–134.PubMedGoogle Scholar
  388. Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6: 68–81.PubMedGoogle Scholar
  389. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685.PubMedCrossRefGoogle Scholar
  390. Suga N, O’Neill WE, Manabe T (1979) Harmonic-sensitive neurons in the auditory cortex of the mustache bat. Science 203: 270–274.PubMedCrossRefGoogle Scholar
  391. Suga N, O’Neill WE, Kujirai K, Manabe T (1983) Specificity of combination-sensitive neurons for processing of complex biosonar signals in auditory cortex of the mustached bat. J Neurophysiol 49: 1573–1626.PubMedGoogle Scholar
  392. Suga N, Zhang Y, Yan J (1997) Sharpening of frequency tuning by inhibition in the thalamic auditory nucleus of the mustached bat. J Neurophysiol 77: 2098–2114.PubMedGoogle Scholar
  393. Sun XD, Jen PH, Sun DX, Zhang SF (1989) Corticofugal influences on the responses of bat inferior collicular neurons to sound stimulation. Brain Res 495: 1–8.PubMedCrossRefGoogle Scholar
  394. Sundstrom RA, Van Laer L, Van Camp G, Smith RJH (1999) Autosomal recessive nonsyndromic hearing loss. Am J Med Genet 89: 123–129.PubMedCrossRefGoogle Scholar
  395. Sutter ML, Schreiner CE (1991) Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. J Neurophysiol 65: 1207–1226.PubMedGoogle Scholar
  396. Syka J, Popelar J (1984) Inferior colliculus in the rat: neuronal responses to stimulation of the auditory cortex. Neurosci Lett 51: 235–240.PubMedCrossRefGoogle Scholar
  397. Tallal P (1980) Language disabilities in children: a perceptual or linguistic deficit? J Pediatr Psychol 5: 127–140.PubMedCrossRefGoogle Scholar
  398. Tallai P, Piercy M (1973) Developmental aphasia: impaired rate of non-verbal processing as a function of sensory modality. Neuropsychol 11: 389–398.CrossRefGoogle Scholar
  399. Tallai P, Stark RE (1981) Speech acoustic-cue discrimination abilities of normally developing and language-impaired children. J Acoust Soc Am 69: 568–574.CrossRefGoogle Scholar
  400. Tallal P, Miller SL, Bedi G, Byma G, Wang X, Nagarajan SS, Schreiner C, Jenkins WM, Merzenich MM (1996) Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271: 81–84.PubMedCrossRefGoogle Scholar
  401. Tennigkeit F, Puil E, Schwarz DW (1997) Firing modes and membrane properties in lemniscal auditory thalamus. Acta Otolaryngol 117: 254–257.PubMedCrossRefGoogle Scholar
  402. Thiele A, Rubsamen R, Hoffmann KP (1996) Anatomical and physiological investigation of auditory input to the superior colliculus of the echolocating megachiropteran bat Rousettus aegyptiacus. Exp Brain Res 112: 223–236.PubMedCrossRefGoogle Scholar
  403. Thompson AM (1998) Heterogeneous projections of the cat posteroventral cochlear nucleus. J Comp Neurol 390: 439–453.PubMedCrossRefGoogle Scholar
  404. Thompson AM, Thompson GC (1991) Posteroventral cochlear nucleus projections to olivocochlear neurons. J Comp Neurol 303: 267–285.PubMedCrossRefGoogle Scholar
  405. Thompson AM, Thompson GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335: 402–412.PubMedCrossRefGoogle Scholar
  406. Thompson AM, Thompson GC (1995) Light microscopic evidence of serotoninergic projections to olivocochlear neurons in the bush baby (Otolemur garnettii). Brain Res 695: 263–266.PubMedCrossRefGoogle Scholar
  407. Thompson AM, Schofield BR (2000) Afferent projections of the superior olivary complex. Microsc Res Tech 51: 330–354.PubMedCrossRefGoogle Scholar
  408. Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neuroscience 7: 3031–3052.PubMedCrossRefGoogle Scholar
  409. Torterolo P, Zurita P, Pedemonte M, Velluti RA (1998) Auditory cortical efferent actions upon inferior colliculus unitary activity in the guinea pig. Neurosci Lett 249: 172–176.PubMedCrossRefGoogle Scholar
  410. Tsuchitani C (1977) Functional organization of lateral cell groups of cat superior olivary complex. J Neurophysiol 40: 296–318.PubMedGoogle Scholar
  411. Tsuji J, Liberman MC (1997) Intracellular labeling of auditory nerve fibers in guinea pig: central and peripheral projections. J Comp Neurol 381: 188–202.PubMedCrossRefGoogle Scholar
  412. Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, SaffioteKolman J, Heinemann SF, Elgoyhen AB (1999) Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23: 93–103.PubMedCrossRefGoogle Scholar
  413. Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat Embryol 185: 1–16.PubMedCrossRefGoogle Scholar
  414. Vetter DE, Saldana E, Mugnaini E (1993) Input from the inferior colliculus to medial olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. Hear Res 70: 173–186.PubMedCrossRefGoogle Scholar
  415. Villa AE (1990) Physiological differentiation within the auditory part of the thalamic reticular nucleus of the cat. Brain Res Brain Res Rev 15: 25–40.PubMedCrossRefGoogle Scholar
  416. Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86: 506–517.PubMedCrossRefGoogle Scholar
  417. Villa AEP, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86: 161–178.PubMedCrossRefGoogle Scholar
  418. Von Economo C (1929) The cytoarchitecture of the human cerebral cortex. London: Oxford University Press.Google Scholar
  419. Von Economo C, Koskinas GN (1925) Die cytoarchitektonik der hirnrinde des erwachsesen menchen. Berlin: Springer.Google Scholar
  420. Von Melchner L, Pallas SL, Sur M (2000) Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404: 871–876.CrossRefGoogle Scholar
  421. Walker AE (1937) The projection of the medial geniculate body to the cerebral cortex in the macaque monkey. J Anat 71: 319–331.PubMedGoogle Scholar
  422. Wallace MT, Stein BE (1994) Cross-modal synthesis in the midbrain depends on input from cortex. J Neurophysiol 71: 429–432.PubMedGoogle Scholar
  423. Wallace MT, Meredith MA, Stein BE (1993) Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. J Neurophysiol 69: 1797–1809.PubMedGoogle Scholar
  424. Walsh EJ, McGee J, McFadden SL, Liberman MC (1998) Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J Neurosci 18: 3859–3869.PubMedGoogle Scholar
  425. Waltzman SB, Cohen NL (1998) Cochlear implantation in children younger than 2 years old. Am J Otol 19: 158–162.PubMedCrossRefGoogle Scholar
  426. Wang X, Robertson D (1997a) Effects of bioamines and peptides on neurones in the ventral nucleus of trapezoid body and rostral periolivary regions of the rat superior olivary complex: an in vitro investigation. Hear Res 106: 20–28.CrossRefGoogle Scholar
  427. Wang X, Robertson D (1997b) Two types of actions of norepinephrine on identified auditory efferent neurons in rat brainstem slices. J Neurophysiol 78: 1800–1810.Google Scholar
  428. Wang X, Robertson D (1998a) Substance P-induced inward current in identified auditory efferent neurons in rat brainstem slices. J Neurophysiol 80: 218–229.Google Scholar
  429. Wang X, Robertson D (1998b) Substance P-sensitive neurones in the rat auditory brainstem: possible relationship to medial olivocochlear neurones. Hear Res 116: 86–98.CrossRefGoogle Scholar
  430. Wang YX, Wenthold RI, Ottersen OP, Petralia RS (1998) Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. J Neurosci 18: 1148–1160.PubMedGoogle Scholar
  431. Warr WB (1969) Fiber degeneration following lesions in the posteroventral cochlear nucleus of the cat. Exp Neurol 23: 140–155.PubMedCrossRefGoogle Scholar
  432. Warr WB (1992) Organization of the olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The auditory mammalian pathway: Neuroanatomy, pp. 410–448. New York: Springer-Verlag.CrossRefGoogle Scholar
  433. Warr WB, Beck JE (1996) Multiple projections from the ventral nucleus of the trapezoid body in the rat. Hear Res 93: 83–101.PubMedCrossRefGoogle Scholar
  434. Warr WB, Boche JB, Neely ST (1997) Efferent innervation of the inner hair cell region—origins and terminations of two lateral olivocochlear systems. Hear Res 108: 89–111.PubMedCrossRefGoogle Scholar
  435. Warr WB, Gratton MA, Boche JEB (1999) Fine structure of labeled lateral efferent axons in the rat cochlea. Assoc Res Otolaryngol 22: 211.Google Scholar
  436. Warren RA, Jones EG (1994) Glutamate activation of cat thalamic reticular nucleus: effects on response properties of ventroposterior neurons. Exp Brain Res 100: 215–226.PubMedCrossRefGoogle Scholar
  437. Webber TJ, Green EJ, Winters RW, Schneiderman N, McCabe PM (1999) Contribution of NMDA and non-NMDA receptors to synaptic transmission from the brachium of the inferior colliculus to the medial subdivision of the medial geniculate nucleus in the rabbit. Exp Brain Res 124: 295–303.PubMedCrossRefGoogle Scholar
  438. Webster DB, Popper AN, Fay RR (Eds) (1992) Springer Handbook of Auditory Research. New York: Springer-Verlag.Google Scholar
  439. Weedman DL, Ryugo DK (1996a) Projections from auditory cortex to the cochlear nucleus in rats: synapses on granule cell dendrites. J Comp Neurol 371: 311–324.CrossRefGoogle Scholar
  440. Weedman DL, Ryugo DK (1996b) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706: 97–102.CrossRefGoogle Scholar
  441. Weinberger NM (1998) Physiological memory in primary auditory cortex—characteristics and mechanisms. Neurobiol Learn Mem 70: 226–251.PubMedCrossRefGoogle Scholar
  442. Weinberger NM, Javid R, Lepan B (1995) Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs. Behav Neurosci 109: 10–17.PubMedCrossRefGoogle Scholar
  443. Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346: 207–236.PubMedCrossRefGoogle Scholar
  444. White EL (1978) Identified neurons in mouse Sml cortex which are postsynaptic to thalamocortical axon terminals: a combined Golgi-electron microscopic and degeneration study. J Comp Neurol 181: 627–661.PubMedCrossRefGoogle Scholar
  445. White EL, Rock MP (1979) Distribution of thalamic input to different dendrites of a spiny stellate cell in mouse sensorimotor cortex. Neurosci Lett 15: 115–119.PubMedCrossRefGoogle Scholar
  446. White EL, Rock MP (1980) Three-dimensional aspects and synaptic relationships of a Golgi-impregnated spiny stellate cell reconstructed from serial thin sections. J Neurocytol 9: 615–636.PubMedCrossRefGoogle Scholar
  447. Whitley JM, Henkel CK (1984) Topographical organization of the inferior collicular projection and other connections of the ventral nucleus of the lateral lemniscus in the cat. J Comp Neurol 229: 257–270.PubMedCrossRefGoogle Scholar
  448. Wilkinson LK, Meredith MA, Stein BE (1996) The role of anterior ectosylvian cortex in cross-modality orientation and approach behavior. Exp Brain Res 112: 1–10.PubMedCrossRefGoogle Scholar
  449. Williams EA, Brookes GB, Prasher DK (1994) Effects of olivocochlear bundle section on otoacoustic emissions in humans: efferent effects in comparison with control subjects. Acta Otolaryngol (Stockh) 114: 121–129.CrossRefGoogle Scholar
  450. Williamson AM, Ohara PT, Ralston HJd (1993) Electron microscopic evidence that cortical terminals make direct contact onto cells of the thalamic reticular nucleus in the monkey. Brain Res 631: 175–179.PubMedCrossRefGoogle Scholar
  451. Winer JA (1984) Anatomy of layer IV in cat primary auditory cortex (AI). J Comp Neurol 224: 535–567.PubMedCrossRefGoogle Scholar
  452. Winer JA (1985) The medial geniculate body of the cat. Advances in Anatomy, Embryology & Cell Biology 86: 1–97.Google Scholar
  453. Winer JA (1992) Thalamus and cortex. In: Webster DB, Popper AN, Fay RF (eds) The mammalian auditory pathway: Neuroanatomy, pp. 222–409. New York: Springer-Verlag.CrossRefGoogle Scholar
  454. Winer JA, Larue DT (1988) Anatomy of glutamic acid decarboxylase immunoreactive neurons and axons in the rat medial geniculate body. J Comp Neurol 278: 47–68.PubMedCrossRefGoogle Scholar
  455. Winer JA, Morest DK (1983) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3: 2629–2651.PubMedGoogle Scholar
  456. Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci USA 93: 8005–8010.PubMedCrossRefGoogle Scholar
  457. Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400: 147–174.PubMedCrossRefGoogle Scholar
  458. Wong D, Kelly JP (1981) Differentially projecting cells in individual layers of auditory cortex: a double labeling study. Brain Res 230: 362–366.PubMedCrossRefGoogle Scholar
  459. Woods CI, Azeredo WJ (1999) Noradrenergic and serotonergic projections to the superior olive: potential for modulation of olivocochlear neurons. Brain Res 836: 9–18.PubMedCrossRefGoogle Scholar
  460. Woolsey TA (1996) Barrels: 25 years later. Somatosens Mot Res 13: 181–186.PubMedCrossRefGoogle Scholar
  461. Wright BA, Lombardino LJ, King WM, Puranik CS, Leonard CM, Merzenich MM (1997) Deficits in auditory temporal and spectral resolution in language-impaired children. Nature 387: 176–178.PubMedCrossRefGoogle Scholar
  462. Wu SH, Kelly JB (1992) Synaptic pharmacology of the superior olivary complex studied in mouse brain slice. J Neurosci 12: 3084–3097.PubMedGoogle Scholar
  463. Wu SH, Kelly JB (1994) Physiological evidence for ipsilateral inhibition in the lateral superior olive: synaptic responses in mouse brain slice. Hear Res 73: 57–64.PubMedCrossRefGoogle Scholar
  464. Wynne B, Robertson D (1997) Somatostatin and substance P-like immunoreactiv- ity in the auditory brainstem of the adult rat. J Chem Neuroanat 12: 259–266.PubMedCrossRefGoogle Scholar
  465. Xia AP, Kikuchi T, Hozawa K, Katori Y, Takasaka T (1999) Expression of the connexin 26 and Na, K-ATPase in the developing mouse cochlear lateral wall: functional applications. Brain Res 846: 106–111.PubMedCrossRefGoogle Scholar
  466. Ye Y, Machado DG, Kim DO (2000) Projection of the marginal shell of the anteroventral cochlear nucleus to olivocochlear neurons in the cat. J Comp Neurol 420: 137–148.CrossRefGoogle Scholar
  467. Yen CT, Conley M, Hendry SH, Jones EG (1985) The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. J Neurosci 5: 2254–2268.PubMedGoogle Scholar
  468. Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19: 10116–10124.PubMedGoogle Scholar
  469. Zhang Y, Suga N (1997) Corticofugal amplification of subcortical responses to single tone stimuli in the mustached bat. J Neurophysiol 78: 3489–3492.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Philip H. Smith
  • George A. Spirou

There are no affiliations available

Personalised recommendations