Advertisement

Adaptive IIR Filters

  • Paulo Sergio Ramirez
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 694)

Abstract

Adaptive infinite impulse response (IIR) filters are those in which the zeros and poles of the filter can be adapted. For that benefit the adaptive IIR filters usually have adaptive coefficients on the transfer function numerator and denominator. Adaptive IIR filters present several advantages as compared with the adaptive FIR filters, including reduced computational complexity. If both have the same number of coefficients, the frequency response of the IIR filter can approximate much better a desired characteristic. Therefore, an IIR filter in most cases requires fewer coefficients, mainly when the desired model has poles and zeros, or sharp resonances [1]–[2]. There are applications requiring hundreds and sometimes thousands of taps in an FIR filter where the use of an adaptive IIR filter is highly desirable. Among these applications are satellite-channel and mobile-radio equalizers, acoustic echo cancellation, etc.

Keywords

Adaptive Filter Infinite Impulse Response Unknown System Infinite Impulse Response Filter Parallel Realization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Antoniou, Digital Filters: Analysis, Design, and Applications, McGraw-Hill, New York, NY, 2nd edition, 1993.Google Scholar
  2. 2.
    P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto, Digital Signal Processing: System Analysis and Design, Cambridge University Press, Cambridge, UK, 2002.MATHCrossRefGoogle Scholar
  3. 3.
    C. R. Johnson Jr., “Adaptive IIR filtering: Current results and open issues,” IEEE Trans, on Information Theory, vol. IT-30, pp. 237–250, Mar. 1984.CrossRefGoogle Scholar
  4. 4.
    J. J. Shynk, “Adaptive IIR filtering,” IEEE ASSP Magazine, vol. 6, pp. 4–21, April 1989.CrossRefGoogle Scholar
  5. 5.
    S. A. White, “An adaptive recursive digital filter,” Proc. 9th Asilomar Conf. on Circuits, Systems, and Computers, Pacific Grove, CA, pp. 21–25, Nov. 1975.Google Scholar
  6. 6.
    S. Hovarth Jr., “A new adaptive recursive LMS filter,” Proc. Digital Signal Processing Conference, Florence, Italy, pp. 21–26, 1980.Google Scholar
  7. 7.
    T. C. Hsia, “A simplified adaptive recursive filter design,” Proceedings of the IEEE, vol. 69, pp. 1153–1155, Sept. 1981.CrossRefGoogle Scholar
  8. 8.
    L. Ljung and T. Soderstrom, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.MATHGoogle Scholar
  9. 9.
    R. A. David, “A modified cascade structure for IIR adaptive algorithms,” Proc. 15th Asilomar Conf. on Circuits, Systems, and Computers, Pacific Grove, CA, pp. 175–179, Nov. 1981.Google Scholar
  10. 10.
    J. J. Shynk, “Adaptive IIR filtering using parallel-form realization,” IEEE Trans, on Acoust., Speech, and Signal Processing, vol. 37, pp. 519–533, April 1989.CrossRefGoogle Scholar
  11. 11.
    P. S. R. Diniz, J. E. Cousseau, and A. Antoniou, “Improved parallel realization of IIR adaptive filters,” Proceedings of the IEE Part G: Circuits, Devices, and Systems, vol. 140, pp. 322–328, Oct. 1993.CrossRefGoogle Scholar
  12. 12.
    P. A. Regalia, Adaptive IIR Filtering for Signal Processing Control, Marcel Dekker, New York, NY, 1995.Google Scholar
  13. 13.
    D. Parikh, N. Ahmed, and S. D. Stearns, “An adaptive lattice algorithm for recursive filters,” IEEE Trans, on Acoust., Speech, and Signal Processing, vol. ASSP-28, pp. 110–112, Feb. 1980.CrossRefGoogle Scholar
  14. 14.
    I. L. Ayala, “On a new adaptive lattice algorithm for recursive filters,” IEEE Trans, on Acoust., Speech, and Signal Processing, vol. ASSP-30, pp. 316–319, April 1982.CrossRefGoogle Scholar
  15. 15.
    J. J. Shynk, “On lattice-form algorithms for adaptive IIR filtering,” Proc. Int. Conf. on Acoust., Speech, Signal Processing, New York, NY, pp. 1554–1557, April 1988.Google Scholar
  16. 16.
    J. A. Rodriguez-Fonollosa and E. Masgrau, “Simplified gradient calculation in adaptive IIR lattice filters,” IEEE Trans, on Signal Processing, vol. 39, pp. 1702–1705, July 1991.CrossRefGoogle Scholar
  17. 17.
    A. H. Gray Jr., and J. D. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans, on Audio Electroacoust, vol. AU-21, pp. 492–500, Dec. 1973.MathSciNetGoogle Scholar
  18. 18.
    F. Itakura and S. Saito, “Digital filtering techniques for speech analysis and synthesis,” Proc. 7th Int. Congr. Acoustics, Paper 25C-1, Budapest, Hungary, pp. 261–264, 1971.Google Scholar
  19. 19.
    M. Tummala, “New adaptive normalised lattice algorithm for recursive filters,” Electronics Letters, vol. 24, pp. 659–661, May 1988.CrossRefGoogle Scholar
  20. 20.
    J. M. Romano and M. G. Bellanger, “Fast least-squares adaptive notch filtering,” IEEE Trans, on Acoustics Speech and Signal Processing, vol. 36, pp. 1536–1540, Sept. 1988.MATHCrossRefGoogle Scholar
  21. 21.
    H. Fan and Y. Yang, “Analysis of a frequency-domain adaptive IIR filter,” IEEE Trans, on Acoust. Speech, and Signal Processing, vol. 38, pp. 864–870, May 1990.CrossRefGoogle Scholar
  22. 22.
    P. S. R. Diniz, J. E. Cousseau, and A. Antoniou, “Fast parallel realization for IIR adaptive filters,” IEEE Trans, on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 41, pp. 561–567, Aug. 1994.CrossRefGoogle Scholar
  23. 23.
    P. S. R. Diniz and A. Antoniou, “Digital-filter structures based on the concept of the voltage-conversion generalized immittance converter,” Canadian J. of Electrical and Computer Engineering, vol. 13, pp. 90–98, April 1988.Google Scholar
  24. 24.
    H. Fan, “A structural view of asymptotic convergence speed of adaptive IIR filtering algorithms: Part I-Infinite precision implementation,” IEEE Trans, on Signal Processing, vol. 41, pp. 1493–1517, April 1993.MATHCrossRefGoogle Scholar
  25. 25.
    J. E. Cousseau, P. S. R. Diniz, G. Sentoni, and O. Agamennoni, “On orthogonal realizations for adaptive IIR filters,” International Journal Circuit Theory and Applications, John Wiley & Sons, NY, vol. 28, pp. 481–500, Sept. 2000.MATHCrossRefGoogle Scholar
  26. 26.
    K. J. Astrom and T. Soderstrom, “Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model,” IEEE Trans, on Automatic Control, vol. AC-19, pp. 769–773, Dec. 1974.MathSciNetCrossRefGoogle Scholar
  27. 27.
    T. Soderstrom, “On the uniqueness of maximum likelihood identification,” Automatica, vol. 11, pp. 193–197, Mar. 1975.MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. D. Stearns, “Error surfaces of recursive adaptive filters,” IEEE Trans, on Acoust., Speech, and Signal Processing, vol. ASSP-29, pp. 763–766, June 1981.Google Scholar
  29. 29.
    T. Soderstrom and P. Stoica, “Some properties of the output error model,” Automatica, vol. 18, pp. 93–99, Jan. 1982.MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Fan and M. Nayeri, “On error surfaces of sufficient order adaptive IIR filters: Proofs and counterexamples to a unimodality conjecture,” IEEE Trans, on Acoust., Speech, and Signal Processing, vol. 37, pp. 1436–1442, Sept. 1989.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    M. Nayeri, “Uniqueness of MSOE estimates in IIR adaptive filtering; a search for necessary conditions,” Proc. Int. Conf. on Acoust., Speech, Signal Processing, Glasgow, Scotland, pp. 1047–1050, May 1989.Google Scholar
  32. 32.
    M. Nayeri, H. Fan, and W. K. Jenkins, “Some characteristics of error surfaces for insufficient order adaptive IIR filters,” IEEE Trans, on Acoust., Speech, and Signal Processing, vol. 38, pp. 1222–1227, July 1990.CrossRefGoogle Scholar
  33. 33.
    L. Ljung, System Identification: Theory for the User, Prentice Hall Inc., Englewood Cliffs, NJ, 1987.MATHGoogle Scholar
  34. 34.
    T. Soderstrom and P. Stoica, System Identification, Prentice Hall International, Hempstead, Hertfordshire, 1989.Google Scholar
  35. 35.
    M. Nayeri and W. K. Jenkins, “Alternate realizations to adaptive IIR filters and properties of their performance surfaces,” IEEE Trans, on Circuits and Systems, vol. 36, pp. 485–496, April 1989.MathSciNetCrossRefGoogle Scholar
  36. 36.
    S. L. Netto, P. S. R. Diniz, and P. Agathoklis, “Adaptive IIR filtering algorithms for system identification: A general framework,” IEEE Trans, on Education, vol. 26, pp. 54–66, Feb. 1995.CrossRefGoogle Scholar
  37. 37.
    J. M. Mendel, Discrete Techniques of Parameter Estimation: The Equation Error Formulation, Marcel Dekker, New York, NY, 1973.MATHGoogle Scholar
  38. 38.
    T. Soderstrom and P. Stoica, “On the stability of dynamic models obtained by least squares identification,” IEEE Trans, on Automatic Control, vol. AC-26, pp. 575–577, April 1981.MathSciNetCrossRefGoogle Scholar
  39. 39.
    T. Soderstrom and P. Stoica, Instrumental Variable Methods for System Identification, Springer Verlag, New York, NY, 1983.CrossRefGoogle Scholar
  40. 40.
    J. -N. Lin and R. Unbehauen, “Bias-remedy least mean square equation error algorithm for IIR parameter recursive estimation,” IEEE Trans, on Signal Processing, vol. 40, pp. 62–69, Jan. 1992.MATHCrossRefGoogle Scholar
  41. 41.
    P. S. R. Diniz and J. E. Cousseau, “A family of equation-error based IIR adaptive algorithms,” IEEE Proc. Midwest Symposium of Circuits and Systems, Lafayette, LA, pp. 1083–1086, 1994.Google Scholar
  42. 42.
    J. E. Cousseau and P. S. R. Diniz, “A general consistent equation-error algorithm for adaptive IIR filtering,” Signal Processing, vol. 56, pp. 121–134, 1997.MATHCrossRefGoogle Scholar
  43. 43.
    J. B. Kenney and C. E. Rohrs, “The composite regressor algorithm for IIR adaptive systems,” IEEE Trans, on Signal Processing, vol. 41, pp. 617–628, Feb. 1993.MATHCrossRefGoogle Scholar
  44. 44.
    S. L. Netto and P. S. R. Diniz, “Composite algorithms for adaptive IIR filtering,” IEE Electronics Letters, vol. 28, pp. 886–888, April 1992.CrossRefGoogle Scholar
  45. 45.
    K. Steiglitz and L. E. McBride, “A technique for the identification of linear systems,” IEEE Trans, on Automatic Control, vol. AC-10, pp. 461–464, Oct. 1965.CrossRefGoogle Scholar
  46. 46.
    H. Fan and W. K. Jenkins, “A new adaptive IIR filter,” IEEE Trans, on Circuits and Systems, vol. CAS-33, pp. 939–947, Oct. 1986.Google Scholar
  47. 47.
    P. Stoica and T. Soderstrom, “The Steiglitz-McBride identification algorithm revisited-convergence analysis and accuracy aspects,” IEEE Trans, on Automatic Control, vol. AC-26, pp. 712–717, June 1981.MathSciNetCrossRefGoogle Scholar
  48. 48.
    B. E. Usevitch and W. K. Jenkins, “A cascade implementation of a new IIR adaptive digital filter with global convergence and improved convergence rates,” IEEE Proc. International Symposium of Circuits and Systems, Portland, OR, pp. 2140–2142, 1989.Google Scholar
  49. 49.
    P. A. Regalia, “Stable and efficient lattice algorithms for adaptive IIR filtering,” IEEE Trans, on Signal Processing, vol. 40, pp. 375–388, Feb. 1992.CrossRefGoogle Scholar
  50. 50.
    J. E. Cousseau and P. S. R. Diniz, “A new realization of IIR echo cancellers using the Steiglitz-McBride method,” Proc. IEEE International Telecommunication Symposium, Rio de Janeiro, Brazil, pp. 11–14, 1994.Google Scholar
  51. 51.
    J. E. Cousseau and P. S. R. Diniz, “A consistent Steiglitz-McBride algorithm,” Proc. IEEE International Symposium of Circuits and Systems, Chicago, IL, pp. 52–55, 1993.Google Scholar
  52. 52.
    J. E. Cousseau and P. S. R. Diniz, “New adaptive IIR filtering algorithms based on Steiglitz-McBride method,” IEEE Trans, on Signal Processing, vol. 45, pp. 1367–1371, May 1997.CrossRefGoogle Scholar
  53. 53.
    H. Fan and M. Doroslovacki, “On ‘global convergence’ of Steiglitz-McBride adaptive algorithm,” IEEE Trans, on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 40, pp. 73–87, Feb. 1993.MATHCrossRefGoogle Scholar
  54. 54.
    M. H. Cheng and V. L. Stonick, “Convergence, convergence point and convergence rate for Steiglitz-McBride method: A unified approach,” Proc. IEEE Intern. Conf on Acoustics Speech and Signal Processing, Adelaide, Australia, 1994.Google Scholar
  55. 55.
    V. L. Stonick and M. H. Cheng, “Adaptive IIR filtering: composite regres-sor method,” Proc. IEEE Intern. Conf. on Acoustics Speech and Signal Processing, Adelaide, Australia, 1994.Google Scholar
  56. 56.
    P. M. Crespo and M. L. Honig, “Pole-zero decision feedback equalization with a rapidly converging adaptive IIR algorithm,” IEEE J. on Selected Areas in Communications, vol. 9, pp. 817–828, Aug. 1991.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Paulo Sergio Ramirez
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations