Advertisement

Subband Adaptive Filters

  • Paulo Sergio Ramirez
Part of the The Kluwer International Series in Engineering and Computer Science book series (SECS, volume 694)

Abstract

There are many applications where the required adaptive filter order is high, as for example, in acoustic echo cancellation where the unknown system (echo) model has a long impulse response, on the order of a few thousand samples [1]–[5]. In such applications, the adaptive filtering algorithm entails a large number of computations. In addition, the high order of the adaptive filter affects the

Keywords

Filter Bank Adaptive Filter Unknown System Prototype Filter Fractional Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Gilloire, “Experiments with sub-band acoustic echo cancellers for teleconferencing,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 2141–2144, Dallas, TX, April 1987.Google Scholar
  2. 2.
    A. Gilloire and M. Vetterli, “Adaptive filtering in subbands with critical sampling: analysis, experiments, and application to acoustic echo cancellation,” IEEE Trans. Signal Processing, vol. 40, pp. 1862–1875, Aug. 1992.MATHCrossRefGoogle Scholar
  3. 3.
    W. Kellermann, “Analysis and design of multirate systems for cancellation of acoustical echoes,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 2570–2573, New York, NY, April 1988.Google Scholar
  4. 4.
    Y. Lu and J. M. Morris, “Gabor expansion for adaptive echo cancellation,” IEEE Signal Processing Magazine, vol.16, pp. 68–80, March 1999.CrossRefGoogle Scholar
  5. 5.
    E. Hansler and G. U. Schmidt, “Hands-free telephones — joint control of echo cancellation and post filtering,” Signal Processing, vol. 80, pp. 2295–2305, Nov. 2000.CrossRefGoogle Scholar
  6. 6.
    M. R. Petraglia and S. K. Mitra, “Performance analysis of adaptive filter structures based on subband decomposition,” Proc. IEEE Int. Symp. on Circuits and Systems, pp. 60–63, Chicago, IL, May 1993.Google Scholar
  7. 7.
    P. L. De Leon II and D. M. Etter, “Experimental results with increased bandwidth analysis filters in oversampled, subband acoustic echo cancellers,” IEEE Signal Processing Letters, vol. 2, pp. 1–3, Jan. 1995.CrossRefGoogle Scholar
  8. 8.
    E. A. B. da Silva and P. S. R. Diniz, “Time-Varying Filters,” Encyclopedia of Electrical and Electronics Engineering, Editor: John G. Webster, John Wiley & Sons, New York, NY, vol. 22, pp. 249–274, 1999.Google Scholar
  9. 9.
    P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs, NJ, 1993.MATHGoogle Scholar
  10. 10.
    M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice-Hall, Englewood Cliffs, NJ, 1995.MATHGoogle Scholar
  11. 11.
    H. Bolcskei and F. Hlawatsch, “Oversampled cosine modulated filter banks with perfect reconstruction,” IEEE Trans. Signal Processing, vol. 45, pp. 1057–1071, Aug. 1998.Google Scholar
  12. 12.
    V. P. Sathe and P. P. Vaidyanathan, “Effects of multirate systems on the statistical properties of random signals,” IEEE Trans. Signal Processing, vol. 41, pp. 131–146, Jan. 1993.MATHCrossRefGoogle Scholar
  13. 13.
    Y. G. Yang, N. I. Cho, and S. U. Lee, “Effects of multirate systems on the statistical properties of random signals,” Signal Processing, vol. 41, pp. 295–307, 1995.MATHCrossRefGoogle Scholar
  14. 14.
    M. Petraglia, R. G. Alves, and P. S. R. Diniz, “New structures for adaptive filtering in subbands with critical sampling,” IEEE Trans, on Signal Processing, vol. 48 , pp. 3316–3327, Dec. 2000.MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Petraglia, R. G. Alves, and P. S. R. Diniz, “Convergence analysis of an oversampled subband adaptive filtering structure with local errors,” Proc. IEEE Int. Symp. on Circuits and Systems, pp. I-563–I-566, Geneve, Switzerland, May 2000.Google Scholar
  16. 16.
    M. Petraglia, R. G. Alves, and P. S. R. Diniz, “Convergence analysis of an oversampled subband adaptive filtering structure with global error,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 468–471, Istanbul, Turkey, June 2000.Google Scholar
  17. 17.
    J. R. Treichler, S. L. Wood and M. G. Larimore, “Convergence rate limitations in certain frequency-domain adaptive filters,” Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 960–963, Scotland, May 1989.Google Scholar
  18. 18.
    G. Strang, Linear Algebra and Its Applications, Academic Press, New York, NY, 1980.Google Scholar
  19. 19.
    S. S. Pradhan and V. U. Reddy, “A new approach to subband adaptive filtering,” IEEE Trans. Signal Processing, vol. 47, pp. 655–664, March 1999.CrossRefGoogle Scholar
  20. 20.
    Y. Higa, H. Ochi, and S. Kinjo, “A subband adaptive filter with the statistically optimum analysis filter bank,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 1150–1154, Aug. 1998.CrossRefGoogle Scholar
  21. 21.
    S. M. Kuo and D. R. Morgan, Active Noise Control Systems, John Wiley & Sons, New York, NY, 1996.Google Scholar
  22. 22.
    D. R. Morgan and M. J. C. Thi, “A delayless subband adaptive filter architecture,” IEEE Trans. Signal Processing, vol. 43, pp. 1819–1830, Aug. 1995.CrossRefGoogle Scholar
  23. 23.
    R. Merched, P. S. R. Diniz, and M. Petraglia, “A delayless alias-free sub-band adaptive filter structure,” IEEE Trans, on Signal Processing, vol. 47, pp. 1580–1591, June 1999.CrossRefGoogle Scholar
  24. 24.
    R. Merched, P. S. R. Diniz, and M. Petraglia, “A delayless alias-free sub-band adaptive filter structure,” Proc. 1997 IEEE Intern. Symposium on Circuits and Systems, Hong-Kong, pp. 2329–2332, June 1997.Google Scholar
  25. 25.
    N. Hirayama, H. Sakai, and S. Miyagi, “Delayless subband adaptive filtering using the Hadamard transform,” IEEE Trans. Signal Processing, vol. 47, pp. 1731–1734, June 1999.CrossRefGoogle Scholar
  26. 26.
    S. Ohno and H. Sakai, “On Delayless subband adaptive filtering by sub-band/fullband transforms,” IEEE Signal Processing Letters, vol. 6, pp. 236–239, Sept. 1999.CrossRefGoogle Scholar
  27. 27.
    K. Nishikawa and H. Kiya, “Conditions for convergence of a delayless sub-band adaptive filter and its efficient implementation,” IEEE Trans. Signal Processing, vol. 46, pp. 1158–1167, April 1998.CrossRefGoogle Scholar
  28. 28.
    U. Iyer, M. Nayeri, and H. Ochi, “Polyphase based adaptive structure for adaptive filtering and tracking,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, pp. 220–232, March 1996.CrossRefGoogle Scholar
  29. 29.
    F. G. V. Resende Jr., P. S. R. Diniz, K. Tokuda, M. Kaneko, and A. Nishihara, “LMS-based algorithms with multi-band decomposition of the estimation error applied to system identification,” IEICE Trans. Fundamentals, Special Issue on Digital Signal Processing, Japan, vol. E00-A, pp. 1376–1383, Aug. 1997.Google Scholar
  30. 30.
    F. G. V. Resende Jr., P. S. R. Diniz, K. Tokuda, M. Kaneko, and A. Nishihara, “New adaptive algorithms based on multi-band decomposition of the error signal,” IEEE Trans, on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 592–599, May 1998.CrossRefGoogle Scholar
  31. 31.
    T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, “Splitting the unit delay,” IEEE Signal Processing Magazine, vol.13, pp. 30–60, Jan. 1996.CrossRefGoogle Scholar
  32. 32.
    I.-S. Lin and S. K. Mitra, “Overlapped block digital filtering,” IEEE Trans­actions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 43, pp. 586–596, Aug. 1996.MATHCrossRefGoogle Scholar
  33. 33.
    P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto, Digital Signal Processing: System Analysis and Design, Cambridge University Press, New York, NY, 2002.MATHCrossRefGoogle Scholar
  34. 34.
    G. A. Clark, S. R. Parker, and S. K. Mitra, “A unified approach to time-and frequency-domain realization of FIR adaptive digital filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 1073–1083, Oct. 1983.CrossRefGoogle Scholar
  35. 35.
    P. C. Sommen, “On the convergence properties of a partitioned block fre­quency domain adaptive filter (PBFDAF),” Proc. European Signal Pro­cessing Conf., pp. 201–203, Barcelona, Spain, Sept. 1990.Google Scholar
  36. 36.
    J. J. Shynk, “Frequency-domain and multirate adaptive filtering,” IEEE Signal Processing Magazine, vol. 9, pp. 15–37, Jan. 1992.CrossRefGoogle Scholar
  37. 37.
    J.-S. Soo and K. Pang, “Multidelay block frequency domain adaptive fil­ter,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 38, pp. 373–376, Feb. 1990.CrossRefGoogle Scholar
  38. 38.
    B. Fahang-Boroujeny, “Analysis and efficient implementation of parti­tioned block LMS filters,” IEEE Trans. Signal Processing, vol. 44, pp. 2865–2868, Nov. 1996.CrossRefGoogle Scholar
  39. 39.
    E. Moulines, O. A. Amrane, and Y. Grenier, “The generalized multidelay adaptive filter: structure and convergence analysis,” IEEE Trans. Signal Processing, vol. 43, pp. 14–28, Jan. 1995.CrossRefGoogle Scholar
  40. 40.
    M. de Couville and P. Duhamel, “Adaptive filtering in subbands using a weighted criterion,” IEEE Trans. Signal Processing, vol. 46, pp. 2359–2371, Sep. 1998.CrossRefGoogle Scholar
  41. 41.
    R. Merched and A. H. Sayed, “An embedding approach to frequency-domain and subband adaptive filtering,” IEEE Trans. Signal Processing, vol. 48, pp. 2607–2619, Sept. 2000.CrossRefGoogle Scholar
  42. 42.
    K. Eneman and M. Moonen, “Hybrid subband/frequency-domain adaptive filters,” Signal Processing, vol. 81, pp. 117–136, 2001.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Paulo Sergio Ramirez
    • 1
  1. 1.Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations