Thermal monitoring of IC’s

  • Josep Altet
  • Antonio Rubio


The feasibility of the different thermal testing procedures is inherently linked to the existence and performance of temperature monitoring techniques. The purpose of monitoring the temperature of an integrated circuit is to obtain an image of the thermal map (the spatial distribution of temperature) of its surface. This map can cover the entire surface, or merely a region of it. It can be continuous (with a given spatial and thermal resolution) or discrete (temperatures at a finite and specific number of points on the surface). The map can be full static (DC) or dynamic (AC) with a given bandwidth. The data of this map can be processed later to generate a detailed thermal analysis which, if compared to reference maps or using its dynamic behaviour, can be used to distinguish defective devices from fully operative ones. In this chapter we will classify the main measuring methods into three domains, depending on the way in which the measurement is taken: by optical, mechanical or built-in temperature sensors.


Liquid Crystal Heat Source Temperature Sensor Bipolar Transistor Liquid Crystal Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [167]
    Chandrasekhar, S., “Liquid crystals”, Cambridge University Press, 1992.Google Scholar
  2. [168]
    Reinitzer, F., Monatsch Chem., 9, 421 (1888).CrossRefGoogle Scholar
  3. [169]
    Lehmann, O., Z. Physical Chem., 4, 462 (1889).Google Scholar
  4. [170]
    Friedel, G., Ann. Physique, 18, 273 (1922).Google Scholar
  5. [171]
    Székely, V. and Rencz, M., “Image processing procedures for the thermal measurements”, IEEE Transaction on Components and Packaging Technology, vol. 22, no. 2, June 1999, pp. 259–265.CrossRefGoogle Scholar
  6. [172]
    Hiatt, J., “A method of detecting hot spots on semiconductors using liquid crystals”, Proc. Int. Rel. Phys, Sym., Apr. 1981, pp. 130–133.Google Scholar
  7. [173]
    Bahadur, B., “Liquid crystal displays”, Gordon and Breach Science Publishers, Molecular Crystals and Liquid Crystals, vol. 109, no. 1, 1984.Google Scholar
  8. [174]
    Székely, V., Rencz, M. and Courtois, B., “Tracing the thermal behavior of ICs”, IEEE Design and Test of Computers, April-June 1998, pp. 14–21.Google Scholar
  9. [175]
    Kolodner, P. and Tyson, J.A., “Remote thermal imaging with.7-mm spatial resolution using temperature-dependent fluorescent thin film”, Appl. Phys. Lett., 42(1), 1 January 1983, pp. 117–119.Google Scholar
  10. [176]
    Kolodner, P. and Tyson, J.A., “Microscopic fluorescent imaging of surface temperature profiles with 0.01 °C resolution”, Appl. Phys. Leu., 40(9), 1 May 1982, pp. 782–784.Google Scholar
  11. [177]
    Results of CP94922 Copernicus Project: Therminic. European Union Projects.Google Scholar
  12. [178]
    Soden, J.M. and Anderson, R.E., “IC failure analysis: techniques and tools for quality and reliability improvement”, Proceedings of the IEEE,vol. 81, no. 5, May 1993, pp. 703716.Google Scholar
  13. [179]
    Lee, D., “Thermal analysis of integrated circuit chips using thermographie imaging techniques”, IEEE Transactions on Instrumentation and Measurements, vol. 43, no. 6, December 1994, pp. 824–829.CrossRefGoogle Scholar
  14. [180]
    Moore, P.J. and Harscoet, F., “Low cost thermal imaging for power systems applications using a conventional CCD camera”, Energy Management and Power Delivery, 1998. Proceedings of EMPD ‘88. 1998, pp. 589–594 vol. 2.Google Scholar
  15. [181]
    Majumdar, A., Annual Review of Materials Science, 1999, Vol. 29, pp. 505–585.CrossRefGoogle Scholar
  16. [182]
    W. Claeys, S. Dilhaire, V. Quintard, J.P. Dom and Y. Danto, “Thermoreflectance Optical Test Probe for the Measurement of Current-Induced Temperature Changes in Microelectronic Components”, Quality and Reliability Engineering International, Vol. 9, 303–308 (1993).CrossRefGoogle Scholar
  17. [183]
    Quintard, V., Deboy, G., Dilhaire, S., Lewis, D., Phan, T. and Claeys, W., “Laser beam thermography of circuits in the particular case of passivated semiconductors”, Microelectronic Engineering 31 (Elesevier), pp. 291–298, 1996.CrossRefGoogle Scholar
  18. [184]
    Claeys, W., Dilhaire, S., Jorez, S. and Patifio Lopez, L.D., “Laser probes for the thermal and thermomechanical characterization of microelectronic devices,” Microelectronics Journal, vol. 32, no. 10–11, Elsevier, pp. 891–898, 2001.Google Scholar
  19. [185]
    Ju, Y.S., Käding, O.W., Leung, Y.K., Wong, S.S., and Goodson, K.E., “ShortTimescale Thermal Mapping of Semiconductor Devices”, IEEE Electron Device Letters, Vol. 18, no. 5, May 1997, pp. 169–171.CrossRefGoogle Scholar
  20. [186]
    Wealdinem, H.A., and Redfield, D., “Temperature dependence of the optical properties of silicon”, J. Appl. Phys, vol. 50, no. 3, p. 1491, 1979.CrossRefGoogle Scholar
  21. [187]
    Dilhaire, S., Jorez, S., Patino, L.D., Claeys, W., and Schaub, E., “Calibration Procedure of Temperature Measurements by Thermoreflectance upon Microelectronic Devices,” 11`h International Conference on Photoacustic and Photothermal Phenomenon, Kyoto, 2000.Google Scholar
  22. [188]
    Altet, J., Dilhaire, S., Volz, S., Rampnoux, J.M., Rubio, A., Grauby S., Patino, L.D., Claeys, W., and Saulnier, J.B., “Four Different Approaches for the Measurement of the IC Surface Temperature: Application to Thermal Testing,” Proc. 7th Therminic Workshop, 2001, pp. 233–238.Google Scholar
  23. [189]
    Altet, J., Dilhaire, S., Granby, S., and Volz, S., “Advanced Techniques for IC Surface Temperature Measurement,” Electronics Cooling. volume B, no. 1, Feb. 2001, pp. 22–30.Google Scholar
  24. [190]
    Altet, J., Rubio, A., Schaub, E., Dilhaire, S., and Claeys, W., “Thermal Couplings in Integrated Circuits: Application to Thermal Testing, ” IEEE Journal of Solid-State Circuits, vol. 36, no. 1, Jan. 2001, pp. 81–91.CrossRefGoogle Scholar
  25. [191]
    Kurabayashi, K., and Goodson, K.E., “Precision Measurement and Mapping of Die-Attach Thermal Resistance”, IEEE Transactions on Components, Packaging and Manufacturing Technology — Part A, vol. 21, no. 3, Sep. 1998, pp. 506–514.CrossRefGoogle Scholar
  26. [192]
    Ju, Y.S., and Goodson, K.E., “Thermal Mapping of Interconnects Subjected to Brief Electrical Stresses, ”IEEE Electron Device Letters, vol. 18, no. 11, November 1997.Google Scholar
  27. [193]
    Dilhaire, S., “Développement d’un interféròmetre laser très haute résolution pour la caractérisation de composants microélectroniques,” Ph.D. Thesis. no. 1103, 1994, Université Bordeaux I.Google Scholar
  28. [194]
    Dilhaire, S., Altet, J., Jorez, S., Schaub, E., Rubio, A., and Claeys, W., “Fault localisation in ICs by goniometric laswer probing of thermal induced surface waves”, Microelectronics Reliability 39 (1999), 919–923.CrossRefGoogle Scholar
  29. [195]
    Jorez, S. “Développement d’instrumentation et de méthodologies pour la caractérisation thermique et thermomécanique de composants électroniques,” Ph.D. Thesis. 2001. Thesis n° 2425 Université Bordeaux I.Google Scholar
  30. [196]
    Dilhaire, S., Jorez, S., Grauby, S., Patino, L.D., Rampnoux, J.M., and Claeys, W., “Thermal stress analysis of Thermoelectric Devices Studied by Speckle Interferometry”, Proc. Therminic 2001. pp. 24–27.Google Scholar
  31. [197]
    Lai, J., Chandrachood, M., Majumdar, A., and Carrejo, J.P., “Thermal Detection of Device Failure by Atomic Force Microscopy,” IEEE Electron Device Letters, vol. 16, no. 7, July 1995, pp. 312–315.CrossRefGoogle Scholar
  32. [198]
    Lo, J.C., Armitage, W.D., and Johnson III, C.S., “Using Atomic Force Microscopy for Deep-Submicron Failure Analysis”, IEEE Design and Test of Computers, Jan.-Feb. 2001, pp. 10–18.Google Scholar
  33. [199]
    Ohte, A. and Yamagata, M., “A Precision Silicon Transistor Thermometer,” IEEE Transactions on Instrumentation and Measurement, vol. IM-26, no. 4, Dec. 1977, pp. 335341.Google Scholar
  34. [200]
    Ohte, A. and Yamagata, M, “Pentium ® III Processor Active Thermal Management Techniques”, Order # 273405–001, August 2000. Google Scholar
  35. [201]
    Ohte, A. and Yamagata, M, “Intel ® Pentium ® 4 Processor in the 423-pin Package. Thermal Design Guidelines,” Order # 249203–001. November, 2000.Google Scholar
  36. [202]
    Meijer, G.C.M., “Thermal Sensors Based on Transistors,” Sensors and Actuators, vol. AlOm 1986, pp. 103–125.Google Scholar
  37. [203]
    Tsividis, Y.P., “Accurate Analysis of Temperature Effects in IC-VBE Chartacteristics with Application to Bandgap Reference Sources,” IEEE Journal of Solid State Circuits, Vol. sc-15, no. 6, Dec. 1980, pp. 1076–1084.Google Scholar
  38. [204]
    Rasmussen, W. and Ristic L. (Editor), “Sensor Technology and Devices. Chap. 8: Thermal Sensors,” Artech House, 1993.Google Scholar
  39. [205]
    Boyle, S.R. and Heald, R.A. “A CMOS Circuit for Real-Time Chip Temperature Measurement,” Spring COMPCON 94, pp. 286–291, 1994.Google Scholar
  40. [206]
    Rasmussen, W., Zhu, J., Richard, S., and Cheeke, D., “CMOS Intelligent Temperature Sensor,” 33rd Midwest Symp. Circuits and Systems, 1990, pp. 849–852.Google Scholar
  41. [207]
    Kölling, A., Bak, F., Bergveld, P. and Evert, S., “Design of a CMOS Temperature Sensor with Current Output,” Sensors and Actuators, A21–A23, 1990, pp. 645–649.Google Scholar
  42. [208]
    Krummenacher, P. and Oguey, H., “Smart Temperature Sensor in CMOS Technology”, Sensors and Actuators, A21–A23, 1990, pp. 636–638.Google Scholar
  43. [209]
    Micheda, J. and Kim, S.K., “A Precision CMOS Bandgap Reference,” IEEE Journal of Solid State Circuits, vol. sc-19, no. 6, Dec. 1984, pp. 1014–1021.CrossRefGoogle Scholar
  44. [210]
    Bianchi, R.A., Karam, J.M., Courtois, B., Nadal, R., Pressecq, F., and Sifflet, S., “CMOS-compatible temperature sensor with digital output for wide temperature range applications”, Microelectronics Journal 31, 2000, pp. 803–810.CrossRefGoogle Scholar
  45. [211]
    Meijer, G.C.M., Wang, G., Fruett, F., “Temperature Sensors and Voltage References Implemented in CMOS Technology,” IEEE Sensors Journal, Vol. 1, no. 3, Oct. 2001, pp. 225–234.CrossRefGoogle Scholar
  46. [212]
    Székely, V. “Thermal monitoring of microelectronic structures”, Microelectronics Journal, 25 1994, pp. 157–170.CrossRefGoogle Scholar
  47. [213]
    Székely, Marta, Cs., Rencz, M., Benedek, Zs., and Courtois, B., “Design for thermal testability (DITT) and a CMOS realization”, Sensors and Actuators A55, 1996, pp. 29–33.CrossRefGoogle Scholar
  48. [214]
    Székely, V., Marta, Cs., Kohari, Zs., and Rencz, M., “CMOS Sensors for On-Line Thermal Monitoring of VLSI Circuits,” IEEE Transactions on VLSI Systems, vol. 5, no. 3, Sep. 1997, pp. 270–276.CrossRefGoogle Scholar
  49. [215]
    Székely, V. Marta, C., Rencz, M., Végh, G., Benedek, Z., and Török, S., “A Thermal Benchmarck Chip: Design and Applications,” IEEE Trans. on Comp. Pack. and Manuf. Tech.- Part A, vol. 21, no. 3, Sept. 1998, pp. 399–405.CrossRefGoogle Scholar
  50. [216]
    López-Buedo, S. Garrido, J. and Boemo, E., “Thermal Testing on Reconf6gurable Computers,” IEEE Design and Test of Computers, Jan.-Mar. 2000, pp. 84–91.Google Scholar
  51. [217]
    López-Buedo, S., Garrido, S. and Boemo, E., “Measurement of FPGA Die Temperature Using Run-Time Configuration, ” 7th Therminic Workshop, 2001, pp. 168–173.Google Scholar
  52. [218]
    Solomon, J.E., “The Monolothic Op Amp: A Tutorial Study”, IEEE Journal of Solid-State Circuits, vol. SC-9, no. 6, pp. 314–332, December 1974.CrossRefGoogle Scholar
  53. [219]
    HSPICE User’s Manual.Google Scholar
  54. [220]
    Gray, P.R. and Douglas, J.H., “Analysis of Electrothermal Integrated Circuits,” IEEE Journal of Solid State Circuits, vol. sc-6, no. 1, Feb. 1971, pp. 8–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Josep Altet
    • 1
  • Antonio Rubio
    • 1
  1. 1.University Politècnia de CatalunyaSpain

Personalised recommendations