Post Mortem Studies of the Hippocampal Formation in Schizophrenia

  • Andrew J. Dwork
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 4)


In recent years, dramatic abnormalities have been found in the hippocampal formation in schizophrenia. These include diminished levels of dendritic spines, reelin, and the 67 kd isoform of glutamic acid decarboxylase, and increased levels of brain derived neurotrophic factor. These findings are not limited to the hippocampal formation and are consistent with excessive synaptic pruning. So far, however, there is little to indicate when the process began.


Dendritic Spine Entorhinal Cortex Hippocampal Formation Presynaptic Protein Bioi Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aggleton, J P, 1985. A description of intra-amygdaloid connections in old world monkeys. Exp Brain Res 1985; 57: 390–399.PubMedCrossRefGoogle Scholar
  2. Akbarian, S, Kim J J, Potkin S G, Hagman J O, Tafazzoli A, Bunney W E, Jr, and Jones E G. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.PubMedCrossRefGoogle Scholar
  3. Akil M and Lewis D A. Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 1997; 154: 1010–1012.PubMedGoogle Scholar
  4. Amaral D G and Insausti R. Hippocampal Formation. In Paxinos, G. (Ed). The Human Nervous system. Academic Press, San Diego, CA. 1990; pp. 711–755.Google Scholar
  5. Angelucci F, Mathe A A, and Aloe L. Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 2000; 60: 783–794.PubMedCrossRefGoogle Scholar
  6. Arnold S E, Franz B R, Gur R C, Gur R E, Shapiro R M, Moberg P J, and Trojanowski J Q. Smaller neuron size in schizophrenia in hippocampal subfields that mediate corticalhippocampal interactions. Am J Psychiatry 1995; 152: 738–748.PubMedGoogle Scholar
  7. Arnold SE, Hyman BT, Van Hoesen GW and Damasio A R. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991a; 48: 625–632.PubMedCrossRefGoogle Scholar
  8. Arnold SE, Lee VM, Gur RE and Trojanowski JQ. Abnormal expression of two microtubule-associated proteins (MAP-2 and MAPS) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 1991b; 88: 10850–10854.PubMedCrossRefGoogle Scholar
  9. Arnold S E, Ruscheinsky DD and Han LY. Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 1997; 42: 639–647.PubMedCrossRefGoogle Scholar
  10. Benes FM, Kwok EW, Vincent SL and Todtenkopf MS. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 1998; 44: 88–97.PubMedCrossRefGoogle Scholar
  11. Benes FM, Sorensen I and Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991; 17: 597–608.PubMedCrossRefGoogle Scholar
  12. Bernstein HG, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H and Bogerts, B. Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 1998; 33: 125–132.PubMedCrossRefGoogle Scholar
  13. Bigot D, Matus A and Hunt SP. Reorganization of the cytoskeleyon in rat neurons following stimulation with excitatory amino acids in vitro. Eur J Neurosci 1991; 3: 551–558.PubMedCrossRefGoogle Scholar
  14. Browning MD, Dudek EM, Rapier JL, Leonard S and Freedman R. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 1993; 34: 529–535.PubMedCrossRefGoogle Scholar
  15. Chen BE, Lendvai B, Nimchinsky EA, Burbach B, Fox K and Svoboda K. Imaging high-resolution structure of GFP-expressing neurons in neocortex in vivo. Learn Mem 2000; 7: 433–441.PubMedCrossRefGoogle Scholar
  16. Cotter D, Wilson S, Roberts E, Kerwin R and Everall IP. Increased dendritic MAP-2 expression in the hippocampus in schizophrenia. Schizophr Res 2000; 41: 313–323.PubMedCrossRefGoogle Scholar
  17. Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries CG and Blennow K. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr Re 1999; 40: 23–29.CrossRefGoogle Scholar
  18. Dwork AJ. Postmortem studies of the hippocampal formation in schizophrenia. [Review] [60 refs]. Schizophr Bull 1997; 23: 385–402.PubMedCrossRefGoogle Scholar
  19. Eastwood SL, Burnet PW and Harrison PJ. Altered synaptophysin expression as a marker of synaptic pathology in schizophrenia. Neuroscience 1995a; 66: 309–319.PubMedCrossRefGoogle Scholar
  20. Eastwood SL, Cairns NJ and Harrison PJ. Synaptophysin gene expression in schizophrenia Investigation of synaptic pathology in the cerebral cortex. Br J Psychiatry 2000; 176: 236–242.PubMedCrossRefGoogle Scholar
  21. Eastwood SL and Harrison Pi. Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 19956; 69: 339–343.Google Scholar
  22. Eastwood SL and Harrison PJ. Detection and quantification of hippocampal synaptophysin messenger RNA in schizophrenia using autoclaved, formalin-fixed, paraffin wax-embedded sections. Neuroscience 1999; 93: 99–106.PubMedCrossRefGoogle Scholar
  23. Fatemi SH, Earle JA, McMenomy T. Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000; 5: 654–663.PubMedCrossRefGoogle Scholar
  24. Falkai P, Bogerts B and Rozumek. Limbic pathology in schizophrenia: the entorhinal region-a morphometric study. Biol Psychiatry 1988; 24: 515–521.PubMedCrossRefGoogle Scholar
  25. Falkai P, Schneider-Axmann T and Honer WG. Entorhinal cortex pre-alpha cell clusters in schizophrenia: quantitative evidence of a developmental abnormality. Biol Psychiatry 2000; 47: 937–943.PubMedCrossRefGoogle Scholar
  26. Feinberg I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Prsychiatr Res 1982; 17: 319–334.CrossRefGoogle Scholar
  27. Feinberg I. Cortical pruning and the development of schizophrenia Schizophr Bull 1990; 16: 567–570.Google Scholar
  28. Finch DM, Nowlin NL and Babb TL. Demonstration of axonal projections of neurons in the rat hippocampus and subiculum by intracellular injection of HRP. Brain Res 1983; 271: 201–216.PubMedCrossRefGoogle Scholar
  29. Gabriel SM, Haroutunian V, Powchik P, Honer WG, Davidson M and Davies P. Increased concentrations of presynaptic proteins in the cingulate cortex of subjects with schizophrenia. Arch Gen Psychiatry 1997; 54: 559–566.PubMedCrossRefGoogle Scholar
  30. Gao XM, Sakai K, Roberts RC, Conley RR, Dean B and Tamminga CA. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. Am J Psychiatry 2000; 157: 1141–1149.PubMedCrossRefGoogle Scholar
  31. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TR and Hirsch SR. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neuro. Neurosurg Psychiatry 1998; 65: 446–453.CrossRefGoogle Scholar
  32. Glantz LA and Lewis DA. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54: 943–952.PubMedCrossRefGoogle Scholar
  33. Glantz LA and Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.PubMedCrossRefGoogle Scholar
  34. Guidotti A, Auta J, Davis JM, DiGiorgi Gerevini V, Dwivedi Y, Grayson DR, Impagnatiello F., Pandey G, Pesold C, Sharma R, Uzunov D and Costa E. Decrease in reelin and glutamic acid decarboxylase 67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.PubMedCrossRefGoogle Scholar
  35. Harrison PJ. The neuropathology of schizophrenia A critical review of the data and their interpretation. Brain 1999; 122: 593–624.PubMedCrossRefGoogle Scholar
  36. Heckers S, Heinsen H, Geiger B and Beckmann H. Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 1991; 48: 1002–1008.PubMedCrossRefGoogle Scholar
  37. Heinsen H, Gossmann E, Rub U, Eisenmenger W, Bauer M, Ulmar G, Bethke B, Schuler M, Schmitt HP, Gotz M, Lockemann U and Puschel K. Variability in the human entorhinal region may confound neuropsychiatrie diagnoses. Acta Anat (Basel) 1996; 157: 226–237.CrossRefGoogle Scholar
  38. Hoffman RE and Dobscha SK. Cortical pruning and the development of schizophrenia: a computer model. Schizophr Bull 1989; 15: 477–490.PubMedCrossRefGoogle Scholar
  39. Honer WG, Falkai P, Chen C, Arango V, Mann JJ and Dwork AJ. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.PubMedCrossRefGoogle Scholar
  40. Honer WG, Falkai P, Young C, Wang T, Xie J, Bonner J, Hu L, Boulianne G L, Luo Z and Trimble WS. Cingulate cortex synaptic terminal proteins and neural cell adhesion molecule in schizophrenia Neuroscience 1997; 78: 99–110.Google Scholar
  41. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP and Costa E. A decrease of reelin expression as a putative vulnerability factor in schizophrenia Proc Natl Acad Sci USA 1998; 95: 15718–15723.Google Scholar
  42. Jakob H and Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1968; 65: 303–326.CrossRefGoogle Scholar
  43. Jakob H and Beckmann H. Gross and histological criteria for developmental disorders in brains of schizophrenics. J R Soc Med 1989; 82: 466–469.PubMedGoogle Scholar
  44. Kalus P, Muller TJ, Zuschratter W and Senitz D. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport 2000; 11: 3621–3625.PubMedCrossRefGoogle Scholar
  45. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG and Griffin WS. Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophrenia: a possible neurochemical basis for ‘hypofrontality’. Mol Psychiatry 1999; 4: 39–45.PubMedCrossRefGoogle Scholar
  46. Kosel KC, Van Hoesen GW and Rosene DL. A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat. Brain Res 1983; 269: 347–351.PubMedCrossRefGoogle Scholar
  47. Krimer LS, Herman MM, Saunders RC, Boyd JC, Hyde TM, Carter JM, Kleinman JE and Weinberger DR. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 1997; 7: 732–739.PubMedCrossRefGoogle Scholar
  48. Landen M, Davidsson P, Gottfries CG, Grenfeldt B, Stridsberg M and Blennow K. Reduction of the small synaptic vesicle protein synaptophysin but not the large dense core chromogranins in the left thalamus of subjects with schizophrenia Biol Psychiatry 1999; 46: 1698–1702.PubMedGoogle Scholar
  49. McGlashan TH and Hoffman RE. 2000. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry 2000; 57: 637–648.PubMedCrossRefGoogle Scholar
  50. Meador-Woodruff HI and Healy DJ. Glutamate receptor expression in schizophrenic brain. Brain Res. Brain Res Rev 2000; 31: 288–294.PubMedCrossRefGoogle Scholar
  51. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G and Berg L. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991; 41: 479–486.PubMedCrossRefGoogle Scholar
  52. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ and Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 1996; 93: 14182–14187.PubMedCrossRefGoogle Scholar
  53. Pesold C, Liu WS, Guidotti A, Costa E and Caruncho HJ. Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. Proc Natl Acad Sci USA 1999; 96: 3217–3222.PubMedCrossRefGoogle Scholar
  54. Ringstedt T, Linnarsson S, Wagner J, Lendahl U, Kokaia Z, Arenas E, Ernfors P and Ibanez CF. BDNF regulates reelin expression and Cajal-Retzius cell development in the cerebral cortex. Neuron 1998; 21: 305–315.PubMedCrossRefGoogle Scholar
  55. Rodriguez MA, Pesold C, Liu WS, Kriho V, Guidotti A, Pappas GD and Costa E. Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proc Natl Acad Sci USA 2000; 97: 3550–3555.PubMedCrossRefGoogle Scholar
  56. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP and Dwork AJ. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 2000; 57: 349–356.PubMedCrossRefGoogle Scholar
  57. Selemon LD and Goldman-Rakic PS. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.PubMedCrossRefGoogle Scholar
  58. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K, Koizumi S, Wakabayashi K, Takahashi H, Someya T and Nawa H. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol Psychiatry 2000; 5: 293–300.PubMedCrossRefGoogle Scholar
  59. Tcherepanov AA and Sokolov BP. Age-related abnormalities in expression of mRNAs encoding synapsin 1A, synapsin 1B, and synaptophysin in the temporal cortex of schizophrenics. J Neurosci Res 1997; 49: 639–644.PubMedCrossRefGoogle Scholar
  60. Vawter MP, Howard AL, Hyde, TM, Kleinman JE and Freed WJ. Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol Psychiatry 1999; 4: 467–475.PubMedCrossRefGoogle Scholar
  61. Verney C, Baulac M, Berger B, Alvarez C, Vigny A and Helle KB. Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 1985; 14: 1039–1052.PubMedCrossRefGoogle Scholar
  62. Yamanouchi H, Jay V, Otsubo H, Kaga M, Becker LE and Takashima S. Early forms of microtubule-associated protein are strongly expressed in cortical dysplasia. Acta Neuropathol (Berl) 1998; 95: 466–470.CrossRefGoogle Scholar
  63. Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P and Honer WG. SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 1998; 8: 261–268.PubMedCrossRefGoogle Scholar
  64. Zaidel DW. Regional differentiation of neuron morphology in human left and right hippocampus: comparing normal to schizophrenia. Int J Psychophysiol 1999; 34: 187–196.PubMedCrossRefGoogle Scholar
  65. Zaidel DW, Esiri MM and Harrison Pi. Size, shape, and orientation of neurons in the left and right hippocampus: investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 1997; 154: 812–818.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Andrew J. Dwork

There are no affiliations available

Personalised recommendations