Advertisement

Microanatomical Findings in Postmortem Brain Tissue from Subjects with Schizophrenia: Disturbances in Thalamocortical and Corticocortical Connectivity in Schizophrenia

  • T. Hashimoto
  • D. A. Lewis
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 4)

Abstract

Evidence from clinical studies suggest that the prefrontal cortex and hippocampal formation are sites of dysfunction in schizophrenia. Postmortem investigations have revealed several types of cellular alterations that appear to be common to both of these brain regions. These changes include reductions in cortical volume or thickness, increased neuronal density without a change in total neuronal number, reduced somal size and alterations in the dendritic trees of projection neurons, and decreased markers of presynaptic axon terminals. This chapter reviews the data that support these conclusions and considers these findings in the context of the extent to which they reflect alterations in thalamocortical and corticocortical connectivity in schizophrenia.

Keywords

Pyramidal Neuron Entorhinal Cortex Hippocampal Formation Parahippocampal Gyrus Neuronal Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed B, Anderson JC, Douglas RJ, Martin KAC, Nelson JC. Polyneuronal innervation of spiny stellate neurons in cat visual cortex. J Comp Neurol 1994; 341: 39–49.PubMedCrossRefGoogle Scholar
  2. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney JrWE, Jones EG. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.PubMedCrossRefGoogle Scholar
  3. Akil M, Lewis DA. The cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 1997; 154: 1010–1012.PubMedGoogle Scholar
  4. Althauser LL, Conrad A, Kovelman JA, Scheibel A. Hippocampal pyramidal cell orientation in schizophrenia. Arch Gen Psychiatry 1987; 44: 1094–1032.CrossRefGoogle Scholar
  5. Altshuler LL, Casanova MF, Goldberg TE, Kleinman JE. The hippocampus and parahippocampus in schizophrenic, suicide, and control brains. Arch Gen Psychiatry 1990; 47: 1029–1034.PubMedCrossRefGoogle Scholar
  6. Amaral DG, Cowan WM. Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 1980; 189: 573–591.PubMedCrossRefGoogle Scholar
  7. Arnold SE, Hyman BT, Van Hoesen GW, Damasio AR. Some cytoarchitectural abnormalities of the entorhinal cortex in schizophrenia. Arch Gen Psychiatry 1991a; 48: 625–632.PubMedCrossRefGoogle Scholar
  8. Arnold SE, Lee VMY, Gur RE, Trojanowski JQ. Abnormal expression of two microtubuleassociated proteins (MAP2 and MAPS) in specific subfields of the hippocampal formation in schizophrenia. Proc Natl Acad Sci USA 1991b; 88: 10850–10854.PubMedCrossRefGoogle Scholar
  9. Arnold SE, Franz BR, Ruben BA, Gur C, Gur RE, Shapiro RM, Moberg PJ, Trojanowski JQ. Smaller neuron size in schizophrenia in hippocampal subfields that mediate corticalhippocampal interactions. Am J Psychiatry 1995; 152: 738–748.PubMedGoogle Scholar
  10. Arnold SE, Ruscheinsky DD, Han L-Y. Further evidence of abnormal cytoarchitecture of the entorhinal cortex in schizophrenia using spatial point pattern analyses. Biol Psychiatry 1997; 42: 639–647.PubMedCrossRefGoogle Scholar
  11. Arnold SE, Han L-Y, Rioux L, Falke E. Abnormal MAP2 neuron representation in subiculum and entorhinal cortex in poor-outcome schizophrenia. Soc Neurosci Abstr 1999; 25: 575.Google Scholar
  12. Barbas H, Pandya DN. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 1989; 286: 353–375.PubMedCrossRefGoogle Scholar
  13. Benes FM, Davidson J, Bird ED. Quantitative cytoarchitectural studies of the cerebral cortex of schizophrenics. Arch Gen Psychiatry 1986; 43: 31–35.PubMedCrossRefGoogle Scholar
  14. Benes FM, McSparren J, Bird ED, SanGiovanni JP, Vincent SL. Deficits in small intemeurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch Gen Psychiatry 1991a; 48: 996–1001.PubMedCrossRefGoogle Scholar
  15. Benes FM, Sorensen I, Bird ED. Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991b; 17: 597–608.PubMedCrossRefGoogle Scholar
  16. Benson DL, Huntsman MM, Jones EG. Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys. Cereb Cortex 1994; 4: 4051.CrossRefGoogle Scholar
  17. Bernstein H-G, Krell D, Baumann B, Danos P, Falkai P, Diekmann S, Henning H, Bogerts B. Morphometric studies of the entorhinal cortex in neuropsychiatric patients and controls: Clusters of heterotopically displaced lamina II neurons are not indicative of schizophrenia. Schizophr Res 1998; 33: 125–132.PubMedCrossRefGoogle Scholar
  18. Bogerts B, Meertz E, Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. Arch Gen Psychiatry 1985; 42: 784–791.PubMedCrossRefGoogle Scholar
  19. Bogerts B, Falkai P, Haupts M, Greve B, Ernst S, Tapernon-Franz U, Heinzmann U. Postmortem volume meansurements of limbic system and basal ganglia structures in chronic schizophrenics. Schizophr Res 1990; 3: 295–301.PubMedCrossRefGoogle Scholar
  20. Brown R, Colter N, Corsellis AN, Crow TJ, Frith CD, Jagoe R, Johnstone EC, Marsh L. Postmortem evidence of structural brain changes in schizophrenia. Arch Gen Psychiatry 1986; 43: 36–42.PubMedCrossRefGoogle Scholar
  21. Browning MD, Dudek EM, Rapier JL, Leonard S, Freedman R. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biol Psychiatry 1993; 34: 529–535.PubMedCrossRefGoogle Scholar
  22. Buchsbaum MS, Someya T, Teng CY, Abel L, Chin S, Najafi A, Haier RJ, Wu J, Bunney JrWE. PET and MRI of the thalamus in never-medicated patients with schizophrenia. Am J Psychiatry 1996; 153: 191–199.PubMedGoogle Scholar
  23. Byne W, Buchsbaum MS, Kemether E, Hazlett EA, Shinwari A, Mitropoulou V, Siever LJ. Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry 2001; 58: 133–140.PubMedCrossRefGoogle Scholar
  24. Christison GW, Casanova MF, Weinberger DR, Rawlings R, Kleinman JE. A quantitative investigation of hippocampal pyramidal cell size, shape, and variability of orientation in schizophrenia. Arch Gen Psychiatry 1989; 46: 1027–1023.PubMedCrossRefGoogle Scholar
  25. Colter N, Battal S, Crow TJ, Johnstone EC, Brown R, Bruton C. White matter reduction in the parahippocampal gyrus of patients with schizophrenia (Letter). Arch Gen Psychiatry 1987; 44: 1023.PubMedCrossRefGoogle Scholar
  26. Condé F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA. Local circuit neurons immunoreactive for calretinin, calbindin D-28k, or parvalbumin in monkey prefrontal cortex: Distribution and morphology. J Comp Neurol 1994; 341: 95–116.PubMedCrossRefGoogle Scholar
  27. Conrad AJ, Abebe T, Austin R, Forsythe S, Scheibel AB. Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiatry 1991; 48: 413–417.PubMedCrossRefGoogle Scholar
  28. Cotter D, Kerwin R, Doshi B, Martin CS, Everall IP. Alterations in hippocampal nonphosphorylated MAP2 protein expression in schizophrenia. Brain Res 1997; 765: 238–246.PubMedCrossRefGoogle Scholar
  29. Cotter D, Wilson S, Roberts E, Kerwin R, Everall IP. Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res 2000; 41: 313–346.PubMedCrossRefGoogle Scholar
  30. Danos P, Baumann B, Bernstein H-G, Franz M, Stauch R, Northoff G, Krell D, Falkai P, Bogerts B. Schizophrenia and anteroventral thalamic nucleus: Selective decrease of parvalbumin-immunoreactive thalamocortical projection neurons. Psychiatry Res: Neuroimaging 1998; 82: 1–10.PubMedCrossRefGoogle Scholar
  31. Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I, Gottfries C-G, Blennow K. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr Res 1999; 40: 23–29.PubMedCrossRefGoogle Scholar
  32. Eastwood SL, Harrison PJ. Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience 1995; 69: 339–343.PubMedCrossRefGoogle Scholar
  33. Eastwood SL, Cairns NJ, Harrison PJ. Synaptophysin gene expression in schizophrenia: Investigation of synaptic pathology in the cerebral cortex. Brit J Psychiatry 2000; 176: 236–242.CrossRefGoogle Scholar
  34. Ettinger U, Chitnis XA, Kumari V, Fannon DG, Sumich AL, O’Ceallaigh S, Doku VC, Sharma T. Magnetic resonance imaging of the thalamus in first-episode psychosis. Am J Psychiatry 2001; 158: 116–118.PubMedCrossRefGoogle Scholar
  35. Falkai P, Bogerts B. Cell loss in the hippocampus of schizophrenics. Eur Arch Psychiatr Neurol Sci 1986; 236: 154–161.CrossRefGoogle Scholar
  36. Falkai P, Bogens B, Rozumek M. Limbic pathology in schizophrenia: The entorhinal region: A morphometric study. Biol Psychiatry 1988; 24: 515–521.PubMedCrossRefGoogle Scholar
  37. Falkai P, Schneider-Axmann T, Honer WG. Entorhinal cortex pre-alpha cell clusters in schizophrenia: Quantitative evidence of a developmental abnormality. Biol Psychiatry 2000; 47: 937–943.PubMedCrossRefGoogle Scholar
  38. Garey LJ, Ong WY, Patel TS, Kanani M, Davis A, Mortimer AM, Barnes TRE, Hirsch SR. Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry 1998; 65: 446–453.PubMedCrossRefGoogle Scholar
  39. Giguere M, Goldman-Rakic PS. Mediodorsal nucleus: Areal, laminar, and tangential distribution of afferents and efferents in the frontal lobe of rhesus monkeys. J Comp Neurol 1988; 277: 195–213.PubMedCrossRefGoogle Scholar
  40. Gilbert AR, Rosenberg DR, Harenski K, Spencer S, Sweeney JA, Keshavan MS. Thalamic volumes in patients with first-episode schizophrenia. Am J Psychiatry 2001; 158: 618–624.PubMedCrossRefGoogle Scholar
  41. Gilbert CD, Kelly JP. The projections of cells in different layers of the cat’s visual cortex. J Comp Neurol 1975; 63: 81–106.CrossRefGoogle Scholar
  42. Glantz LA, Lewis DA. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia: Regional and diagnostic specificity. Arch Gen Psychiatry 1997; 54: 943–952.PubMedCrossRefGoogle Scholar
  43. Glantz LA, Lewis DA. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 2000; 57: 65–73.PubMedCrossRefGoogle Scholar
  44. Glantz LA, Austin MC, Lewis DA. Normal cellular levels of synaptophysin mRNA expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2000; 48: 389–397.PubMedCrossRefGoogle Scholar
  45. Guidotti A, Auta J, Davis JM, Gerevini VD, Dwivedi Y, Grayson DR, Impagnatiello F, Pandey G, Pesold C, Sharma R, Uzunov D, Costa E. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder. Arch Gen Psychiatry 2000; 57: 1061–1069.PubMedCrossRefGoogle Scholar
  46. Gur RE, Cowell PE, Latshaw A, Turetsky BI, Grossman RI, Arnold SE, Bilker WB, Gur RC. Reduced dorsal and orbital prefrontal gray matter volumes in schizophrenia. Arch Gen Psychiatry 2000a; 57: 761–768.PubMedCrossRefGoogle Scholar
  47. Gur RE, Turetsky BI, Cowell PE, Finkelman C, Maany V, Grossman RI, Arnold SE, Bilker WB, Gur RC. Temporolimbic volume reductions in schizophrenia Arch Gen Psychiatry 2000b; 57: 769–775.Google Scholar
  48. Gutnikov SA, Ma YY, Gaffan D. Temporo-frontal disconnection impairs visual-visual paired association learning but not configurai learning in Macaca monkeys. Eur J Neurosci 1997; 9: 1524–1529.PubMedCrossRefGoogle Scholar
  49. Hanada S, Mita T, Nishino N, Tanaka C. [3H]Muscimol binding sites increased in autopsied brains of chronic schizophrenics. Life Sci 1987; 40: 239–266.CrossRefGoogle Scholar
  50. Harrison PJ, Eastwood SL. Preferential involvement of excitatory neurons in medial temporal lobe in schizophrenia Lancet 1998; 352: 1669–1673.Google Scholar
  51. Harrison PJ, Lewis DA. Neuropathology in schizophrenia. In: Hirsch S and Weinberger D R (eds). Schizophrenia. Blackwell Science Ltd., Oxford, 2001; in press.Google Scholar
  52. Hayes TL, Lewis DA. Interhemispheric differences in the dendritic aborization of magnopyramidal neurons of the anterior speech region. Soc Neurosci Abstr 1993; 19: 844.Google Scholar
  53. Hazlett EA, Buchsbaum MS, Byne W, Wei T-C, Spiegel-Cohen J, Geneve C, Linderlehrer R, Mehmet Haznedar M, Shihabuddin L, Siever LJ. Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. Am J Psychiatry 1999; 156: 1190–1199.PubMedGoogle Scholar
  54. Heckers S, Heinsen H, Heinsen YC, Beckmann H. Limbic structures and lateral ventricles in schizophrenia: A quantitative postmortem study. Arch Gen Psychiatry 1990a; 47: 1016–1022.PubMedCrossRefGoogle Scholar
  55. Heckers S, Heinsen H, Heinsen YC, Beckmann H. Morphometry of the parahippocampal gyms in schizophrenics and controls. Some anatomical considerations. J Neural Transm 1990b; 80: 151–155.CrossRefGoogle Scholar
  56. Heckers S, Heinsen H, Geiger B, Beckmann H. Hippocampal neuron number in schizophrenia. A stereological study. Arch Gen Psychiatry 1991a 48: 1002–1008.PubMedCrossRefGoogle Scholar
  57. Heckers S, Heinsen H, Heinsen YC, Beckmann H. Cortex, white matter, and basal ganglia in schizophrenia: A volumetric postmortem study. Biol Psychiatry 199 lb; 29: 556–566.Google Scholar
  58. Heinsen H, Gössmann E, Rub U, Eisnemenger W, Bauer M, Ulmar G, Bethke B, Schüler M, Schmitt H-P, Götz M, Lockeman U, Puschel K. Variability in the human entorhinal region may confound neuropsychiatrie diagnoses. Acta Anat 1996; 157: 226–237.PubMedCrossRefGoogle Scholar
  59. Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P, Kisler T, Arakaki H, Kwon JS, Anderson JE, Yurgelun-Todd D, Tohen M, McCarley RW. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998; 155: 1384–1391.PubMedGoogle Scholar
  60. Hirayasu Y, Tanaka S, Shenton ME, Salisbury DF, DeSantis MA, Levitt JJ, Wible C, Yurgelun-Todd D, Kikinis R, Jolesz FA, McCarley RW. Prefrontal gray matter volume reduction in first episode schizophrenia Cereb Cortex 2001; 11: 374–381.Google Scholar
  61. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 1999; 91: 1247–1255.PubMedCrossRefGoogle Scholar
  62. Insausti R, Amaral DG, Cowan WM. The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol 1987; 264: 356–395.PubMedCrossRefGoogle Scholar
  63. Jacobs B, Driscoll L, Schall M. Life-span dendritic and spine changes in areas 10 and 18 of human cortex: A quantitative Golgi study. J Comp Neurol 1997; 386: 661–680.PubMedCrossRefGoogle Scholar
  64. Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65: 303–326.PubMedCrossRefGoogle Scholar
  65. Jeste DV, Lohr JB. Hippocampal pathologic findings in schizophrenia: A morphometric study. Arch Gen Psychiatry 1989; 48: 1019–1024.CrossRefGoogle Scholar
  66. Jones EG, Hendry SHC. Differential calcium binding protein immunoreactivity distinguishes classes of relay neurons in monkey thalamic nuclei. Eur J Neurosci 1989; 1: 222–246.PubMedCrossRefGoogle Scholar
  67. Jones EG. GABAergic neurons and their role in cortical plasticity in primates. Cereb Cortex 1993; 3: 361–372.PubMedCrossRefGoogle Scholar
  68. Kalus P, Müller TJ, Zuschratter W, Senitz D. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. NeuroReport 2000; 11: 3621–3625.Google Scholar
  69. Karson CN, Mrak RE, Schluterman KO, Sturner WQ, Sheng JG, Griffin WST. Alterations in synaptic proteins and their encoding mRNAs in prefrontal cortex in schizophenia: A possible neurochemical basis for ‘hypofrontality’. Mol Psychiatry 1999; 4: 39–45.PubMedCrossRefGoogle Scholar
  70. Konick LC, Friedman L. Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 2001; 49: 28–38.PubMedCrossRefGoogle Scholar
  71. Kovelman JA, Scheibel AB. A neurohistological correlate of schizophrenia. Biol Psychiatry 1984; 19: 1601–1602.PubMedGoogle Scholar
  72. Krimer LS, Herman MM, Saunders RC, Boyd JC, Hyde TM, Carter JM, Kleinman JE, Weinberger DR. A qualitative and quantitative analysis of the entorhinal cortex in schizophrenia. Cereb Cortex 1997; 7: 732–739.PubMedCrossRefGoogle Scholar
  73. Levitt JB, Lewis DA, Yoshioka T, Lund JS. Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 & 46). J Comp Neurol 1993; 338: 360–376.PubMedCrossRefGoogle Scholar
  74. Lewis DA. Distributed disturbances in brain structure and funtion in schizophrenia (editorial). Am J Psychiatry 1999; 157: 1–2.Google Scholar
  75. Lewis DA, Cruz DA, Melchitzky DS, Pierri JN. Lamina-specific reductions in parvalbuminimmunoreactive axon terminals in the prefrontal cortex of subjects with schizophrenia: Evidence for decreased projections from the thalamus. Am J Psychiatry 2001; in press.Google Scholar
  76. Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J Comp Neurol 1975; 164: 287–304.PubMedCrossRefGoogle Scholar
  77. Melchitzky DS, Sesack SR, Pucak ML, Lewis DA. Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex. J Comp Neurol 1998; 390: 211–224.PubMedCrossRefGoogle Scholar
  78. Melchitzky DS, Sesack SR, Lewis DA. Parvalbumin-immunoreactive axon terminals in monkey and human prefrontal cortex: Laminar, regional and target specificity of Type I and Type II synapses. J Comp Neurol 1999; 408: 11–22.PubMedCrossRefGoogle Scholar
  79. Melchitzky DS, Gonzalez-Burgos G, Barrionuevo G, Lewis DA. Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex. J Comp Neurol 2000; 430: 209–221.CrossRefGoogle Scholar
  80. Nelson MD, Saykin Al, Flashman LA, Riordan HJ. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: A meta-analytic study. Arch Gen Psychiatry 1998; 55: 433–440.PubMedCrossRefGoogle Scholar
  81. Pakkenberg B. Post-mortem study of chronic schizophrenic brains. Br J Psychiatry 1987; 151: 744–752.PubMedCrossRefGoogle Scholar
  82. Pakkenberg B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry 1990; 47: 1023–1028.PubMedCrossRefGoogle Scholar
  83. Pakkenberg B. The volume of the mediodorsal thalamic nucleus in treated and untreatedGoogle Scholar
  84. schizophrenics. Schizophr Res 1992; 7: 95–100.Google Scholar
  85. Pakkenberg B. Total nerve cell number in neocortex in chronic schizophrenics and controls estimated using optical disectors. Biol Psychiatry 1993; 34: 768–772.PubMedCrossRefGoogle Scholar
  86. Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 1996; 93: 14182–14187.PubMedCrossRefGoogle Scholar
  87. Pieni JN, Chaudry AS, Woo T-U, Lewis DA. Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am J Psychiatry 1999; 156: 1709–1719.Google Scholar
  88. Pieni JN, Volk CLE, Auh S, Sampson A, Lewis DA. Decreased somal size of deep layer 3 pyramidal neurons in the prefrontal cortex in subjects with schizophrenia. Arch Gen Psychiatry 2000; 58: 466–473.Google Scholar
  89. Plum F. Neuropathological findings. In: Kety SS and Malthysse S M (eds). Prospects for Research on Schizophrenia. MIT Press, Cambridge, MA, 1972; pp 385–388.Google Scholar
  90. Popken GJ, Bunney Jr. WE, Potkin SG, Jones EG. Subnucleus-specific loss of neurons in medial thalamus of schizophrenics. Proc Natl Acad Sci 2000; 97: 9276–9280.PubMedCrossRefGoogle Scholar
  91. Pucak ML, Levitt JB, Lund JS, Lewis DA. Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. J Comp Neurol 1996; 376: 614–630.PubMedCrossRefGoogle Scholar
  92. Rajkowska G, Selemon LD, Goldman-Rakic PS. Neuronal and glial somal size in the prefrontal cortex: A postmortem morphometric study of schizophrenia and Huntington disease. Arch Gen Psychiatry 1998; 55: 215–224.PubMedCrossRefGoogle Scholar
  93. Razi K, Greene KP, Sakuma M, Ge S, Kushner M, DeLisi LE. Reduction of the parahippocampal gyrus and the hippocampus in patients with chronic schizophrenia. Br J Psychiatry 1999; 174: 512–519.PubMedCrossRefGoogle Scholar
  94. Rosene DL, Van Hoesen GW. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 1977; 198: 315–317.PubMedCrossRefGoogle Scholar
  95. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP, Dwork AJ. Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: Preliminary findings. Arch Gen Psychiatry 2000; 57: 349–356.PubMedCrossRefGoogle Scholar
  96. Schwartz ML, Goldman-Rakic PS. Callosal and intrahemispheric connectivity of the prefrontal association cortex in rhesus monkey: Relation between intraparietal and principal sulcal cortex. J Comp Neurol 1984; 226: 403–420.PubMedCrossRefGoogle Scholar
  97. Selemon LD, Rajkowska G, Goldman-Rakic PS. Abnormally high neuronal density in the schizophrenic cortex: A morphometric analysis of prefrontal area 9 and occipital area 17. Arch Gen Psychiatry 1995; 52: 805–818.PubMedCrossRefGoogle Scholar
  98. Selemon LD, Rajkowska G, Goldman-Rakic PS. Elevated neuronal density in prefrontal area 46 in brains from schizophrenic patients: Application of a three-dimensional, stereologic counting method. J Comp Neurol 1998; 392: 402–412.PubMedCrossRefGoogle Scholar
  99. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.PubMedCrossRefGoogle Scholar
  100. Sherman AD, Davidson AT, Baruah S, Hegwood TS, Waziri R. Evidence of glutamatergic deficiency in schizophrenia. Neurosci Lett 1991; 121: 77–80.PubMedCrossRefGoogle Scholar
  101. Sigmundsson T, Suckling J, Maier M, Williams SCR, Bullmore ET, Greenwood KE, Fukuda R, Ron MA, Toone BK. Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. Am J Psychiatry 2001; 158: 234–243.PubMedCrossRefGoogle Scholar
  102. Staal WG, Pol HEH, Schnack HG, Hoogendoorn MLC, Jellema K, Kahn RS. Structural brain abnormalities in patients with schizophrenia and their healthy sibling. Am J Psychiatry 2000; 157: 416–421.PubMedCrossRefGoogle Scholar
  103. Suzuki WA, Amaral DG. Topographic organization of the reciprocal connections between the monkey entorhinal cortex and the perirhinal and parahippocampal cortices. J Neurosci 1994a; 14: 1856–1877.PubMedGoogle Scholar
  104. Suzuki WA, Amaral DG. Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J Comp Neurol 1994b; 350: 497–533.PubMedCrossRefGoogle Scholar
  105. Thune JJ, Uylings HB, Pakkenberg B. No deficit in total number of neurons in the prefrontal cortex in schizophrenics. J Psychiatr Res 2001; 35: 15–21.PubMedCrossRefGoogle Scholar
  106. Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M, Desmond P, Bridle N, Tierney P, Murrie V, Singh B, Copolov D. Hippocampal volume in first-episode psychoses and chronic schizophrenia. A high-resolution magnetic resonance imaging study. Arch Gen Psychiatry 1999; 56: 133–140.PubMedCrossRefGoogle Scholar
  107. Vogt BA, Pandya DN, Rosene DL. Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J Comp Neurol 1987; 262: 256–270.PubMedCrossRefGoogle Scholar
  108. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. Decreased GAD67 mRNA expression in a subset of prefrontal cortical GABA neurons in subjects with schizophrenia. Arch Gen Psychiatry 2000; 57: 237–245.PubMedCrossRefGoogle Scholar
  109. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: Decreased expression in a subset of neurons. Am J Psychiatry 2001; 158: 256–265.PubMedCrossRefGoogle Scholar
  110. Witter MP, Van Hoesen GW, Amaral DG. Topographical organization of the entorhinal projection to the dentate gyrus of the monkey. J Neurosci 1989; 9: 216–228.PubMedGoogle Scholar
  111. Witter MP, Amaral DG. Entorhinal cortex of the monkey: V. Projections to the dentate gyms, hippocampus and subicular complex. J Comp Neurol 1991; 307: 437–459.PubMedCrossRefGoogle Scholar
  112. Woo T-U, Miller JL, Lewis DA. Parvalbumin-containing cortical neurons in schizophrenia. Am J Psychiatry 1997; 154: 1013–1015.PubMedGoogle Scholar
  113. Woo T-U, Whitehead RE, Melchitzky DS, Lewis DA. A subclass of prefrontal gammaaminobutyric acid axon terminals are selectively altered in schizophrenia. Proc Natl Acad Sci USA 1998; 95: 5341–5346.PubMedCrossRefGoogle Scholar
  114. Wright IC, Sharma T, Ellison ZR, McGuire PK, Friston KJ, Brammer MJ, Murray RM, Bullmore ET. Supra-regional brain systems and the neuropathology of schizophrenia. Cereb Cortex 1999; 9: 366–378.PubMedCrossRefGoogle Scholar
  115. Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RIv1, Bullmore ET. Metaanalysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25.PubMedGoogle Scholar
  116. Young CE, Arima K, Xie J, Hu L, Beach TG, Falkai P, Honer WG. SNAP-25 deficit and hippocampal connectivity in schizophrenia. Cereb Cortex 1998; 8: 261–268.PubMedCrossRefGoogle Scholar
  117. Young KA, Manaye KF, Liang C-L, Hicks PB, German DC. Reduced number of mediodorsal and anterior thalamic neurons in schizophrenia. Biol Psychiatry 2000; 47: 944–953.PubMedCrossRefGoogle Scholar
  118. Yukie M. Connections between the medial temporal cortex and the CAI subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 2000; 423: 282–298.PubMedCrossRefGoogle Scholar
  119. Zaidel DW, Esiri MM, Harrison PJ. The hippocampus in schizophrenia: Lateralized increase in neuronal density and altered cytoarchitectural asymmetry. Psychol Med 1997a; 27: 703–713.PubMedCrossRefGoogle Scholar
  120. Zaidel DW, Esiri MM, Harrison PJ. Size, shape, and orientation of neurons in the left and right hippocampus: Investigation of normal asymmetries and alterations in schizophrenia. Am J Psychiatry 1997b; 154: 812–818.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • T. Hashimoto
  • D. A. Lewis

There are no affiliations available

Personalised recommendations