MV-Algebras and Abelian l-Groups: a Fruitful Interaction

  • Vincenzo Marra
  • Daniele Mundici
Part of the Developments in Mathematics book series (DEVM, volume 7)


Introduced by Chang in the late fifties, MV-algebras stand to Łukasiewicz’s infinite-valued propositional logic as boolean algebras stand to the classical propositional calculus. As stated by Chang in his original paper, “MV is supposed to suggest many-valued logics … for want of a better name”. The name has stuck. After some decades of relative quiescency, MV-algebras are today intensely investigated. On the one hand, these algebras find applications in such diverse fields as error-correcting feedback codes and logic-based control theory. On the other hand, MV-algebras are interesting mathematical objects in their own right. The main aim of this paper is to show that the interaction between MV-algebras and lattice-ordered abelian groups — including the timehonored theory of magnitudes — has much to offer, not only to specialists in these two fields, but also to people interested in the fan-theoretic description of toric varieties, and in the K0-theory of AF C*-algebras.


Abelian Group Simplicial Group Boolean Algebra Simplicial Complex Dimension Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    James Waddel Alexander, Combinatorial analysis situs. Trans. AMS 28 (1926), 301–329.MATHCrossRefGoogle Scholar
  2. [2]
    James Waddel Alexander, The combinatorial theory of complexes. Ann. of Math. (2) 31 (1930), 292–320.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Kirby A. Baker, Free vector lattices. Canad. J. Math. 20 (1968), 58–66.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    W. Meurig Beynon, Duality theorems for finitely generated vector lattices. Proc. London Math. Soc. (3) 31 (1975), 114–128.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    W. Meurig Beynon, Applications of duality in the theory of finitely generated lattice-ordered abelian groups. Canad. J. Math. 29 (2) (1977), 243–254.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    Garrett Birkhoff, Lattices and their applications. In Lattice Theory and its Applications; (Darmstadt, 1991); (1995) Heldermann, Lemgo, 7–25.Google Scholar
  7. [7]
    Bruce Blackadar, K- Theory for Operator Algebras. (1987) Springer Verlag, BerlinHeidelberg-New York.Google Scholar
  8. [8]
    Ola Bratteli, Inductive limits of finite dimensional C* -algebras. Trans. AMS 171 (1972), 195–234.MathSciNetMATHGoogle Scholar
  9. [9]
    Constantin Carathéodory, Algebraic theory of measure and integration. (2nd Ed.; Edited and with a preface by P. Finsler, A. Rosenthal and R. Steuerwald; Translated from the German by F. E. J. Linton.) (1986) Chelsea Publ. Co., New York.MATHGoogle Scholar
  10. [10]
    Chen C. Chang, Algebraic analysis of many valued logics. Trans. AMS 88 (1958), 467–490.MATHCrossRefGoogle Scholar
  11. [11]
    Chen C. Chang, A new proof of the completeness of the Łukasiewicz axioms. Trans. AMS 93 (1959), 74–80.MATHGoogle Scholar
  12. [12]
    Roberto Cignoli, Free lattice-ordered abelian groups and varieties of MV-algebras. In Proceedings of the IX Latin American Symposium on Mathematical Logic, Part 1 (Bahia Blanca, 1992); (1993) Univ. Nacional del Sur, Bahia Blanca, 113–118.Google Scholar
  13. [13]
    Roberto Cignoli and Daniele Mundici, An elementary proof of Chang’s completeness theorem for the infinite-valued calculus of Lukasiewicz. Studia Logica 58 (1) (1997), 79–97.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Roberto Cignoli, Itala D’Ottaviano, and Daniele Mundici, Algebraic Foundations of Many- Valued Reasoning. (2000) Kluwer Acad. Publ., Dordrecht.MATHGoogle Scholar
  15. [15]
    Paul F. Conrad, Representation of partially ordered abelian groups as groups of real valued functions. Acta Math. 116 (1966), 199–221.MathSciNetMATHGoogle Scholar
  16. [16]
    Paul F. Conrad and J. Roger Teller, Abelian pseudo lattice ordered groups. Publ. Math. Debrecen 17 (1971), 223–241.MathSciNetMATHGoogle Scholar
  17. [17]
    Corrado De Concini and Claudio Procesi, Complete symmetric varieties, II. Intersection theory. In Algebraic groups and related topics (Kyoto/Nagoya, 1983), (1985) North-Holland, Amsterdam, 481–513.Google Scholar
  18. [18]
    Jacques Dixmier, C* -Algebras. (1977) North-Holland, Amsterdam.MATHGoogle Scholar
  19. [19]
    Edward G. Effros, Dimensions and C*-algebras. (1981) Conference Board of the Mathematical Sciences, Washington, D.C.; American Mathematical Society, Providence, RI.MATHGoogle Scholar
  20. [20]
    Edward G. Effros, David E. Handelman, and Chao Liang Shen, Dimension groups and their affine representations. Amer. J. Math. 102 (2) (1980), 385–407.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    George A. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras. J. Algebra 38 (1) (1976), 29–44.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    George A. Elliott, On totally ordered groups, and K 0. In Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978); Lecture Notes in Mathematics 734 Springer Verlag, Berlin-Heidelberg-New York, 1–49.Google Scholar
  23. [23]
    Gérard G. Emch, Mathematical and Conceptual Foundations of 20th Century Physics. (1984) North-Holland, Amsterdam.MATHGoogle Scholar
  24. [24]
    A Euclid, The thirteen books of Euclid’s Elements translated from the text of Heiberg. Vol. I: Introduction and Books I, II; Vol. II: Books III-IX; Vol. III: Books X-XIII and Appendix. Transl. with introduction and commentary by Thomas L. Heath, 2nd ed.; (1956) Dover Publ. Inc., New York.Google Scholar
  25. [25]
    Günter Ewald, Combinatorial Convexity and Algebraic Geometry. (1996) Springer Verlag, Berlin-Heidelberg-New York.MATHCrossRefGoogle Scholar
  26. [26]
    Andrew M. W. Glass, Partially Ordered Groups. (1999) World Scientific Publ. Co. Inc., River Edge, NJ.MATHCrossRefGoogle Scholar
  27. [27]
    Kenneth R. Goodearl, Notes on Real and Complex C* -Algebras. (1982) Birkhäuser, Boston.MATHGoogle Scholar
  28. [28]
    Kenneth R. Goodearl, Partially Ordered Abelian Groups with Interpolation. (1986) AMS Providence, RI.MATHGoogle Scholar
  29. [29]
    David Handelman, Ultrasimplicial dimension groups. Arch. Math. (Basel) 40 (2) (1983) 109–115.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]
    Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras, Volume II. (1986) Academic Press, San Diego, CA.MATHGoogle Scholar
  31. [31]
    Vincenzo Marra, Every abelian ℓ-group is ultrasimplicial. J. Algebra, 225 (2000), 872–884.MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    Robert McNaughton, A theorem about infinite-valued sentential logic. J. Symbolic Logic 16 (1951), 1–13.MathSciNetMATHCrossRefGoogle Scholar
  33. [33]
    Daniele Mundici, Interpretation of AF C* -algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1) (1986), 15–63.MathSciNetMATHCrossRefGoogle Scholar
  34. [34]
    Daniele Mundici, The derivative of truth in Lukasiewicz sentential calculus. In Methods and applications of mathematical logic (Campinas, 1985): Contemp. Math. (1988), AMS, Providence, RI, 209–227.CrossRefGoogle Scholar
  35. [35]
    Daniele Mundici, Farey stellar subdivisions, ultrasimplicial groups, and K 0 of AF C*-algebras. Advances in Math. 68 (1) (1988), 23–39.MathSciNetMATHCrossRefGoogle Scholar
  36. [36]
    Daniele Mundici, A constructive proof of McNaughton’s theorem in infinite-valued logic. J. Symbolic Logic 59 (2) (1994), 596–602.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    Daniele Mundici, Non-boolean partitions and their logic. Soft Computing 2 (1988), 18–22.CrossRefGoogle Scholar
  38. [38]
    Daniele Mundici, Classes of ultrasimplicial lattice-ordered abelian groups. J. Algebra 213 (2) (1999), 596–603.MathSciNetMATHCrossRefGoogle Scholar
  39. [39]
    Daniele Mundici and Giovanni Panti, A constructive proof that every 3-generated l-group is ultrasimplicial. In Logic, Algebra, and Computer Science (Warsaw, 1996); (1999) Banach Center Publ., Polish Acad. Sci., Warsaw, 169–178.Google Scholar
  40. [40]
    Daniele Mundici and Giovanni Panti, Decidable and undecidable prime theories in infinite-valued logic. Annals of Pure and Applied Logic 108 (2001) 269–278.MathSciNetMATHCrossRefGoogle Scholar
  41. [41]
    Tadao Oda, Convex Bodies and Algebraic Geometry. (1988) Springer Verlag, Berlin-Heidelberg-New York.MATHGoogle Scholar
  42. [42]
    Giovanni Panti, A geometric proof of the completeness of the Lukasiewicz calculus. J. Symbolic Logic 60 (2) (1995), 563–578.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    Alan Rose and J. Barkley Rosser, Fragments of many-valued statement calculi. Trans. AMS 87 (1958), 1–53.MathSciNetMATHCrossRefGoogle Scholar
  44. [44]
    Alexander Schrijver, Theory of Linear and Integer Programming. Wiley-Interscience Publ. (1986). John Wiley & Sons Ltd., Chichester, 1986.MATHGoogle Scholar
  45. [45]
    Alfred Tarski, Logic, Semantics, Metamathematics. Papers from 1923 to 1938. (Oxford at the Clarendon Press, 1956;) Transl. by J. H. Woodger; (1983) Reprinted by Hackett, Indianapolis.Google Scholar
  46. [46]
    J. Roger Teller, On abelian pseudo lattice ordered groups. Pacific J. Math. 27 (1968) 411–419.MathSciNetMATHCrossRefGoogle Scholar
  47. [47]
    Mordchaj Wajsberg, Beiträge zum Metaaussagenkalkül I. Monatshefte für Mathematik und Physik 42 (1935), 221–242.MathSciNetCrossRefGoogle Scholar
  48. [48]
    Elliot Carl Weinberg, Free lattice-ordered abelian groups. Math. Ann. 151 (1963), 187–199.MathSciNetMATHCrossRefGoogle Scholar
  49. [49]
    Ryszard Wdjcicki, On matrix representations of consequence operations of Lukasiewicz’s sentential calculi. Z. Math. Logik Grundl. Math. 19 (1973) 239–247. (Reprinted in [50].)CrossRefGoogle Scholar
  50. [50]
    Ryszard Wójcicki and Grzegorz Malinowski, editors. Selected papers on Lukasiewicz sentential calculi. Zakład Narodowy imienia Ossolińskich, Wydawnictwo Polskiej Akademii Nauk, (1977); Ossolineum, Polish Academy of Sciences, Wrocław.Google Scholar
  51. [51]
    Kôsaku Yosida, On vector lattice with a unit. Proc. Imp. Acad. Tokyo 17 (1941), 121–124.MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    Günter M. Ziegler, Lectures on Polytopes. (1995) Springer-Verlag, Berlin-Heidelberg-New York.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Vincenzo Marra
    • 1
  • Daniele Mundici
    • 1
  1. 1.Computer Science DepartmentUniversity of MilanMilanItaly

Personalised recommendations