Advertisement

Least Integer Closed Groups

  • Anthony W. Hager
  • Chawne M. Kimber
  • Warren Wm. McGovern
Part of the Developments in Mathematics book series (DEVM, volume 7)

Abstract

An a-closure of a lattice-ordered group is an extension which is maximal with respect to preserving the lattice of convex l-subgroups under contraction. We describe the a-closures of some local singular archimedean lattice-ordered groups with designated weak unit. In particular, we provide explicit descriptions of all of the a-closures of groups that are singularly convex, such as the group C(X, ℤ) of continuous integer-valued functions on a zero-dimensional space.

Keywords

Vector Lattice Singular Part Riesz Space Prime Subgroup Weak Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Anderson, Locally flat vector lattices, Canad. J. Math. 32 no. 4, (1980), 924–936.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    E. Aron, Embedding lattice-ordered algebras in uniformly closed algebras. (1971) University of Rochester Dissertation.Google Scholar
  3. [3]
    E. Aron and A. Hager, Convex vector lattices and t-algebras. Topology and Appl. 12 (1981), 1–10.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    R. Ball and A. Hager, One the localic Yosida representation of an archimedean lattice-ordered group with weak order unit.J. Pure and Applied Algebra, 70 (1991), 17–43.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    R. Ball and A. Hager, Algebraic extensions of an archimedean lattice-ordered group, I. J. Pure and Applied Algebra, 85 (1993), 1–20.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    P. Conrad, Archimedean extensions of lattice-ordered groups. J. Indian Math. Soc. 30 (1966), 131–160.MathSciNetMATHGoogle Scholar
  7. [7]
    P. Conrad Epi-archimedean groups, Czech. Math. J. 24 (99) (1974), 192–218.MathSciNetGoogle Scholar
  8. [8]
    P. Conrad, M. Darnel and D. G. Nelson, Valuations of lattice-ordered groups. J. Algebra 192 no. 1, (1997), 380–411.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    M. Darnel, Theory of Lattice-Ordered Groups. Pure and Appl. Math. 187 (1995) Marcel Dekker, New York.Google Scholar
  10. [10]
    L. Gillman and M. Jerison, Rings of Continuous Functions. (1960) D. Van Nos-trand Publ. Co.MATHGoogle Scholar
  11. [11]
    A. Hager and C. Kimber, Some examples of hyperarchimedean lattice-ordered groups. Submitted.Google Scholar
  12. [12]
    A. Hager, C. Kimber and W. McGovern Pseudo-least integer closed groups. In progress.Google Scholar
  13. [13]
    A. Hager and J. Martinez, Archimedean singular lattice-ordered groups. Alg. Univer. 40 (1998), 119–147.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    A. Hager and L. Robertson, Extremal units in an archimedean Riesz space. Rend. Sem. Mat. Univ. Padova 59 (1978), 97–115.MathSciNetMATHGoogle Scholar
  15. [15]
    A. Hager and L. Robertson, Representing and ringifying a Riesz space. Symp. Math. 21 (1977), 411–431.MathSciNetGoogle Scholar
  16. [16]
    M. Henriksen, J. Isbell, and D. Johnson, Residue class fields of lattice-ordered algebras. Fund. Math. 50 (1961), 107–117.MathSciNetMATHGoogle Scholar
  17. [17]
    M. Henriksen and D. Johnson, On the structure of a class of Archimedean lattice-ordered algebras. Fund. Math. 50 (1961), 73–94.MathSciNetMATHGoogle Scholar
  18. [18]
    C. Kimber and W. McGovern, Bounded away lattice-ordered groups. (1998) Manuscript.Google Scholar
  19. [19]
    J. Martinez, The hyper-archimedean kernel sequence of a lattice-ordered group. Bull. Austral. Math. Soc. 10 (1974), 337–340.MathSciNetMATHCrossRefGoogle Scholar
  20. [20]
    K. Yosida, On the representation of the vector lattice. Proc. Imp. Acad. Tokyo 18 (1942), 339–343.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Anthony W. Hager
    • 1
  • Chawne M. Kimber
    • 2
  • Warren Wm. McGovern
    • 3
  1. 1.Department of MathematicsWesleyan UniversityMiddletownUSA
  2. 2.Department of MathematicsLafayette CollegeEastonUSA
  3. 3.Department of Mathematics and StatisticsBowling Green State UniversityBowling GreenUSA

Personalised recommendations