Advertisement

The Bornological Tensor Product of two Riesz Spaces

  • G. Buskes
  • A. van Rooij
Part of the Developments in Mathematics book series (DEVM, volume 7)

Abstract

We construct the bornological Riesz space tensor product of two bornological Riesz spaces. This unifies the Archimedean Riesz space tensor product and the projective tensor product, both introduced by Fremlin. We extend the results, even in these special cases, by considering maps of bounded variation rather than positive maps. This note is without proofs, but the proof and complete bornology background of a similar result are discussed elsewhere in this volume.

Keywords

Tensor Product Bounded Variation Banach Lattice Riesz Space Norm Completeness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. D. Aliprantis and O. Burkinshaw, Positive Operators. (1985) Acad. Press, New York-London.MATHGoogle Scholar
  2. [2]
    C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces. (1978) Acad. Press, New York-London.MATHGoogle Scholar
  3. [3]
    D. H. Fremlin, Tensor products of Archimedean vector lattices. Amer. J. Math. XCIV No 3 (1972) 777–798.MathSciNetCrossRefGoogle Scholar
  4. [4]
    D. H. Fremlin, Tensor products of Banach lattices. Math. Annalen 211 (1974), 87–106.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    M. Grange, Bornologie de l’Ordre. Doctoral Thesis, (1972) Université de Bordeaux.Google Scholar
  6. [6]
    M. Grange, Sur la bornologie de l’ordre. Publ. du Département de Mathématiques Lyon, 10–3 (1973), 11–33.Google Scholar
  7. [7]
    H. Hogbe-Nlend, Complétion, Tenseurs et Nucléarité en Bornologie. J. Math. Pures et Appl., 49 (1970), 193–288.MathSciNetMATHGoogle Scholar
  8. [8]
    H. Hogbe-Nlend, Bornologies and Functional Analysis. Math. Studies 26 (1977), North Holland, Amsterdam-New York-Oxford.MATHGoogle Scholar
  9. [9]
    C. Houzel (editor), Séminaire Banach. Lecture Notes in Math. 277 (1972), Springer Verlag, Berlin-Heidelberg-New York.MATHGoogle Scholar
  10. [10]
    W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, I. (1971) North Holland, Amsterdam-London.Google Scholar
  11. [11]
    P. Meyer-Nieberg, Banach Lattices. Universitext (1991), Springer-Verlag, BerlinHeidelberg-New York.MATHCrossRefGoogle Scholar
  12. [12]
    H. H. Schaefer, Banach Lattices and Positive Operators. (1974) Springer-Verlag, Berlin-Heidelberg-New York.MATHCrossRefGoogle Scholar
  13. [13]
    Y.-Ch. Wong, Schwartz Spaces, Nuclear Spaces and Tensor Products. Lecture Notes in Math. 726 (1979), Springer-Verlag, Berlin-Heidelberg-New York.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • G. Buskes
    • 1
  • A. van Rooij
    • 2
  1. 1.Department of MathematicsUniversity of MississippiUniversityUSA
  2. 2.Department of MathematicsCatholic UniversityNijmegenthe Netherlands

Personalised recommendations