Advertisement

Prevalence Analysis of Recurrent and Transient Health States in Quality of Life Studies

  • Andrew Kramar
  • Remi Lancar

Abstract

We present methods for analyzing quality of life data through the use of weighted prevalence functions when data allow a classification of scores into discrete states of health. Individual longitudinal data is transformed from an event history model into a non-parametric setting to provide a simpler interpretation in terms of probabilities. We discuss similarities and differences with quality adjusted survival methodology and illustrate the methods with an example.

Keywords

Prevalence Function Event History Model Prevalence Analysis Crude Cumulative Incidence Radiation Oncology Biology Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, N.K., Cull, A.M., Kaasa, S. and Sprangers, M.A.G. (1996). The European Organisation for Research and Treatment of Cancer (EORTC) modular approach to quality of life assessment in oncology : an update. In : Spiker, B. (ed.), Quality of Life and Pharmacoeconomics in Clinical Trials, 2nd Edition. New York : Raven Press, pp. 179–189.Google Scholar
  2. Chassagne, D., Sismondi, P., Horiot, J.C., Sinistrero, G., Bey, P., Zola, P., Pernot, M., Gerbaulet, A., Kunkler, I. and Michel, G. (1993). A glossary for reporting complications of treatment in gynaecological cancers. Radiotherapy and Oncology 26, 195–202.PubMedCrossRefGoogle Scholar
  3. Cox, D.R., Fitzpatrick, R., Fletcher, A.E., Gore, S.M., Spiegelhalter, D.J. and Jones, D.R. (1992). Quality of life assessment : can we keep it simple? Journal of the Royal Statistical Society, Series A 155, 353–393.Google Scholar
  4. Curran, D., Fayers, P., Molenberghs, G. and Machin, D. (1998). Analysis of incomplete quality of life data in clinical trials. In : Staquet, M.J., Hays, R.D. and Fayers, P. (eds.), Quality of Life Assessment in Clinical Trials. Methods and Practice. Oxford : Oxford University Press, p. 249–280.Google Scholar
  5. Denekamp, J. (1996). Correction for the use of the SOMA LENT tables. International Journal of Radiation Oncology Biology Physics 35, 417.CrossRefGoogle Scholar
  6. Gelber, R.D., Gelman, R.S. and Goldhirsch, A. (1989). A Quality-of-life-oriented endpoint for comparing therapies. Biometrics 45, 781–797.PubMedCrossRefGoogle Scholar
  7. Glasziou, P.P., Simes, R.J. and Gelber, R.D. (1990). Quality adjusted survival analysis. Statistics in Medicine 9, 1259–1276.PubMedCrossRefGoogle Scholar
  8. Haie-Meder, C., Kramar, A., Lambin, P., Lancar, R., Scalliet, P., Bouzy, J. and Gerbaulet, A. (1994). Analysis of complications in a prospective randomized trial comparing two brachytherapy low dose rates in cervical carcinoma. International Journal of Radiation Oncology Biology Physics 29, 953–960.CrossRefGoogle Scholar
  9. Kalbfleisch, J.D. and Prentice, R.L. (1980). The Statistical Analysis of Failure Time Data. New York : Wiley.Google Scholar
  10. Kaplan, E.L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 53, 457–481.CrossRefGoogle Scholar
  11. King, M.T. (1996). The interpretation of scores from the EORTC quality of life questionnaire QLQ C-30. Quality of Life Research 5, 555–567.PubMedCrossRefGoogle Scholar
  12. Lancar, R., Kramar, A. and Haie-Meder, C. (1995). Non-parametric methods for analyzing recurrent complications of varying severity. Statistics in Medicine 14, 2701–2712.PubMedCrossRefGoogle Scholar
  13. Lancar, R., Kramar, A., Haie-Meder, C. Lambin, P., Bouzy, J. Scalliet, P. and Chassagne, D. (1994). Méthode d’évaluation des complications tardives. Etude basée sur un essai de phase III comparant deux faibles débits de doses en curiethérapie gynécologique. Bulletin du Cancer 81, 632–637.PubMedGoogle Scholar
  14. Pavy, J.J., Denekamp, J., Letschert, J., Lettbrand, B., Mornex, F., Bernier, J., Gonzales-Gonzales, D., Horiot, J.C., Bolla, M. and Bartelink, H (1995). Late effects toxicity scale : the SOMA scale. EORTC late effects working group. Radiotherapy and Oncology 35, 11–60.PubMedCrossRefGoogle Scholar
  15. Pepe M.S., Longton G. and Thornquist M. (1991). A qualifier Q for the survivor function to describe the prevalence of a transient condition. Statistics in Medicine 10, 413–421.PubMedCrossRefGoogle Scholar
  16. Ribaudo, H.J., Thompson, S.G. and Allen-Mersh, T.G. (2000). A joint analysis of quality of life and survival using a random effect selection model. Statistics in Medicine 19, 3237–3250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Andrew Kramar
    • 1
  • Remi Lancar
    • 2
  1. 1.Val d’Aurelle Regional Cancer CentreFrance
  2. 2.INSERM SC4France

Personalised recommendations