Skip to main content

Abstract

This paper defines a class of multivariate models combining features of Rasch type models with features of graphical interaction models into a common framework for analysis of criterion related construct validity and differential item functioning. Item analysis by Graphical Rasch models is illustrated with reanalysis of a summary Health scale counting numbers of experienced symptoms within the last six months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agresti, A. (1984). Analysis of Ordinal Categorical Data. New York: Wiley.

    Google Scholar 

  • Andersen, E.B. (1973). A goodness of fit test for the Rasch model. Psychometrika 38, 123–140.

    Article  Google Scholar 

  • Andersen, E.B. (1977). Sufficient statistics and latent trait models. Psychometrika 42, 69–81.

    Article  Google Scholar 

  • Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika 43, 561–573.

    Article  Google Scholar 

  • Arnold, S.F. (1988). Sufficient Statistics. In: Kotz, S. and Johnson, N.L. (eds.), Encyclopedia of Statistical Sciences. New York: Wiley.

    Google Scholar 

  • Cox, D.R. and Wermuth, N. (1996). Multivariate Dependencies: Models, Analysis and Interpretation. London: Chapman and Hall.

    Google Scholar 

  • Darroch, J.N., Lauritzen, S.L. and Speed, T. (1980). Markov fields and log-linear interaction models for contingency tables. Annals of Statistics 8, 522–539.

    Article  Google Scholar 

  • Edwards, D. (2000). Introduction to Graphical Modelling. 2nd Edition. New York: Springer-Verlag.

    Book  Google Scholar 

  • Glas, C.A.W and Verhelst, N.D. (1995). Testing the Rasch Model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments and Applications. New York: Springer-Verlag.

    Google Scholar 

  • Hanson, B.A. (1998). Uniform DIF and DIF defined by differences in item response functions. Journal of Educational and Behavioral Statistics 23, 244–253.

    Google Scholar 

  • Holland, P.W. and Wainer, H., eds. (1993). Differential Item Functioning. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika 49, 223–245.

    Article  Google Scholar 

  • Kelderman, H. (1995). The polytomous Rasch model within the class of generalized linear symmetry models. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models: Foundations, Recent Developments and Applications. New York: Springer-Verlag

    Google Scholar 

  • Kolmogoroff, A.N. (1942). Definitions of center of dispersion and measure of accuracy from a finite number of observations. Izv. Akad. Nauk. SSSR Ser. Mat. 6, 3–32. (Russian).

    Google Scholar 

  • Kreiner, S. (1987). Analysis of multidimensional contingency tables by exact conditional tests: techniques and strategies. Scandinavian Journal of Statistics 14, 97–112.

    Google Scholar 

  • Kreiner, S. (1993). Validation of index scales for analysis of survey data: The Symptom Index. In: Dean, K. (ed.), Population Health Research. London: Sage Publications.

    Google Scholar 

  • Kreiner, S. (1998). Interaction model. In: Armitage, P. and Colton, T. (eds.), Encyclopedia of Biostatistics. Chichester: Wiley.

    Google Scholar 

  • Lauritzen, S.L. (1996). Graphical Models. London: Clarendon Press.

    Google Scholar 

  • Masters, G.N. (1982). A Rasch model for partial credit scoring. Psychometrika 47, 149–174.

    Article  Google Scholar 

  • Rasch, G. (1960). Probabilistic Models for Some Intelligence and Attainment Tests. Copenhagen: The Danish Institute of Educational Research.

    Google Scholar 

  • Rasch, G. (1977). On specific objectivity. An attempt at formalizing the request for generality and validity of scientific statements. In: Blegvad, M. (ed.), The Danish Yearbook of Philosophy. Copenhagen: Munksgaard.

    Google Scholar 

  • Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics 9, 23–30.

    Google Scholar 

  • Whitmore, M.L and Schumacker, R.E. (1999). A comparison of logistic regression and analysis of variance differential item functioning detection methods. Educational and Psychological Measurement 59, 910–927.

    Article  Google Scholar 

  • Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kreiner, S., Christensen, K.B. (2002). Graphical Rasch Models. In: Mesbah, M., Cole, B.F., Lee, ML.T. (eds) Statistical Methods for Quality of Life Studies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3625-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3625-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5207-3

  • Online ISBN: 978-1-4757-3625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics