Skip to main content

Questionnaire Reliability Under the Rasch Model

  • Chapter

Abstract

Quality of life studies must be concerned with the accuracy, or reliability (as it is usually called in psychometrics) of measurement. A reliability coefficient gives an evaluation of a questionnaire’s ability to yield interpretable statements about the construct being measured. There are two classes of models for analyzing unidimensional scales: classical models and Item Response Theory (IRT) models. Classical models are based on a linear decomposition of the score, and reliability is estimated using Cronbach’s alpha coefficient. IRT models focus on the relationship between the probability of a correct answer and a latent variable. The Rasch model is a special IRT model which having good measurement properties. In the context of the Rasch model, or IRT models in general, no reliability coefficient similar to Cronbach Alpha is clearly defined. Some authors have studied the Fisher information of the latent parameter, which provides a measure of accuracy of the estimator. In this chapter, we present how reliability is estimated for classical models, and we propose a reliability coefficient for the Rasch model. Simulated data and data derived from the communication subscale of the Sickness Impact Profile are used to illustrate the methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, E.B. (1970). Asymptotic properties of conditional maximum likelihood estimators. Journal of the Royal Statistical Society, Series B 32, 283–301.

    Google Scholar 

  • Bergner, M., Bobbit, R.A., Pollard, W.E., Martin, D.R and Gilson, B.S. (1976). The Sickness Impact Profile: validation of a health status measure. Medical Care 14, 57–67.

    Article  PubMed  CAS  Google Scholar 

  • Cortina, J.M. (1998). What is coefficient Alpha? An examination of theory and applications. Journal of Applied Psychology 78, 98–104.

    Article  Google Scholar 

  • Curt, F., Mesbah, M., Lellouch, J. and Dellatolas, G. (1997). Handedness scale: how many and which items? Laterality 2, 137–154.

    PubMed  CAS  Google Scholar 

  • Fischer, G.H. (1981). On the existence and uniqueness of maximum-likelihood estimates of the Rasch model. Psychometrika 46, 59–77.

    Article  Google Scholar 

  • Fischer, G.H. (1995). Derivations of the Rasch model. In: Fischer, G.H. and Molenaar, I.W. (eds.), Rasch Models, Foundations, Recent Developments, and Applications, New-York: Springer-Verlag.

    Google Scholar 

  • Fischer, G.H. and Molenaar, I.W. (1995). Rasch Models, Foundations, Recent Developments, and Applications, New-York: Springer-Verlag.

    Google Scholar 

  • Glas, C.A.W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika 53, 525–546.

    Article  Google Scholar 

  • Haberman, S.J. (1977). Maximum likelihood estimates in exponential response models. Annals of Statistics 5, 815–841.

    Article  Google Scholar 

  • Hamon, A. and Iovleff, S. (2001). Estimation in a longitudinal Rasch model via three stochastic EM algorithms. Technical report, Laboratoire SABRES, Université de Bretagne Sud.

    Google Scholar 

  • Klauer, K.C. (1990). Asymptotic properties of the ML estimator of the ability parameter when item parameters are known. Methodika 4, 23–26.

    Google Scholar 

  • Kreiner, S. and Christensen, K.B. (2001). Graphical Rasch models. In Mesbah, M., Cole, B.F. and Lee, M.L.T. (eds.), Statistical Methods for Quality of Life Studies: Design, Measurements and Analysis, Amsterdam: Kluwer.

    Google Scholar 

  • Kristof, W. (1963). The Statistical theory of stepped-up reliability coefficients when a test has been divided into several equivalent parts. Psychometrika 28, 221–238.

    Article  Google Scholar 

  • Lauritzen, S.L. and Wermuth, N. (1989). Graphical models for associations between variables, some of which are qualitative and some quantitative. Annals of Statistics 17, 31–54.

    Article  Google Scholar 

  • Lord, F.M. (1980). Applications of Rem Response Theory to Practical Testing Problems, Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lord, F.M. (1983). Unbiased estimators of ability parameters, of their variance, and of their parallel-forms reliability, Psychometrika 48, 233–245.

    Article  Google Scholar 

  • Lord, F.M. and Novick, M.R. (1968). Statistical Theories of Mental Test Scores, Reading, MA: Addison-Wesley.

    Google Scholar 

  • Mokken, R.J. (1996). Nonparametric models for dichotomous responses. In: van der Linden, W. and Hambleton, R.K. (eds.), Handbook of Modern Rem Response Theory, New-York: Springer-Verlag.

    Google Scholar 

  • Moret, L., Mesbah, M., Chwalow, J. and Lellouch, J. (1993). Internal validation of a measurement scale: relation between principal component analysis, Cronbach’s alpha coefficient and intra-class correlation coefficient. Revue d’Epidépidémiologie et de Santé Publique 41, 179–186.

    CAS  Google Scholar 

  • Molenaar, I.W. and Sijtsma, K. (2000). MSP, a program for Mokken scale analysis for polytomous items, iec ProGAMMA, Groningen, The Netherlands.

    Google Scholar 

  • Nunnally, J.C. and Bernstein I.H. (1994). Psychometric Theory, 3rd Edition, New-York: McGraw-Hill.

    Google Scholar 

  • Rasch G. (1993). Probabilistic Models for some Intelligence and Attainment tests. Chicago: MESA Press.

    Google Scholar 

  • Sijtsma, K. and Molenaar, I.W. (1987). Reliability of test scores in noparametric item response theory. Psychometrika 52, 79–97.

    Article  Google Scholar 

  • Ten Berge, J.M.F. and Zegers, F.E. (1978). A series of lower bounds to the reliability of a test. Psychometrika 43, 575–579.

    Article  Google Scholar 

  • Thissen, D. (1982). Marginal maximum likelihood estimation for the one-parameter logistic model. Psychometrika 47, 175–186.

    Article  Google Scholar 

  • Tjur, T. (1982). A Connection between Rasch’s item analysis model and a multiplicative Poisson model. Scandinavian Journal of Statistics, 9, 23–30.

    Google Scholar 

  • Wainer, H., Dorans, N.J., Flaugher, R., Green, B.F., Mislevy, R.J., Steinberg, L. and Thissen, D., Eds. (1990). Computerized Adaptive Testing: A Primer. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hamon, A., Mesbah, M. (2002). Questionnaire Reliability Under the Rasch Model. In: Mesbah, M., Cole, B.F., Lee, ML.T. (eds) Statistical Methods for Quality of Life Studies. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3625-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3625-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5207-3

  • Online ISBN: 978-1-4757-3625-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics