Advertisement

Efficiency

  • G. Isac
  • V. A. Bulavsky
  • V. V. Kalashnikov
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 63)

Abstract

A very popular domain of applied mathematics is optimization, because the diversity of its applications to economics, engineering and sciences. Certainly the applications to practical problems stimulated the impressive development of this domain. Between the chapters of optimization, one is the optimization of vector-valued functions, known also under the name of Pareto optimization. In 1906 V. Pareto wrote: “Principeremo con deftnire un termine di cui è comodo fare uso per scansare lungaggini. Diremo che i componenti di una colletivita godono, in una certa postione, del massimo di ofelimita, quando è impossibile allontanarsi pochissimo da quella positione giovando, o nuocendo, a tutti i componenti la collectività; ogni picolissimo spostamento da quella positione avendo necessariamente per effetto di giovare a parte dei componenti la collectività e di nuocere ad altri.” (Pareto, 1919).

Keywords

Convex Cone Vector Optimization Convex Space Vector Optimization Problem Closed Convex Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.J., Barankin, E.W. and Blackwell, D. ‘Admissible Points of Convex Sets’.- In: Contributions to the Theory of Games, 2. K.W. Kuhn and A.W. Tucker, eds., Princeton University Press: Princeton, New Jersey, 1953.- P. 87–92Google Scholar
  2. Bacopoulos A, Godini G. and Singer I. Infima of sets in the plane and applications to vectorial optimization. Rev. Roumaine de Math. Pures et Appl. 1978; 23: 343–360MathSciNetMATHGoogle Scholar
  3. Bahya AO. 1. Étude des cônes nucléaires. Ann. Sci. Math. Quebec. 1991; 15: 123–133MathSciNetMATHGoogle Scholar
  4. Bahya AO. 2. Ensembles côniquement bornés et cônes nucléaires dans les éspaces localement convexes séparés’. Thèse (3-eme cycle), Ecole Normale Superieure, Rabat, Morocco, 1989.Google Scholar
  5. Bahya AO. 3. Résultats sur des cônes séquentiellement complètement réguliers’.Preprint, 1995.Google Scholar
  6. Bahya AO. 4. Études des Cônes Nucléaires dans les Éspaces Localement Convexes Séparés. Thèse (Docteur d’Etat Es. Sciences Mathématiques), Université Mohammed V, Faculté des Sciences, Rabat, Morocco, 1997.Google Scholar
  7. Becker R. Sur les cônes (faiblement complets) contenus dans le dual d’un espace de Banach non reflexif. Bull. Austral. Math. Soc. 1989; 39: 321–328.MathSciNetMATHCrossRefGoogle Scholar
  8. Benson HP. 1. An improved definition of proper efficiency for vector minimization with respect to cones. J. Math. Anal. Appl. 1979; 71: 232–241.MathSciNetMATHCrossRefGoogle Scholar
  9. Benson HP. 2. On a domination property for vector maximization with respect to cones. J. Optim. Theory Appl. 1983; 39: 125–132;MathSciNetMATHCrossRefGoogle Scholar
  10. Benson HP. 2. Errata Corrige, J. Optim. Theory Appl. 1984; 43: 477–479.MathSciNetCrossRefGoogle Scholar
  11. Benson HP. 3. Efficiency and proper efficiency for vector minimization with respect to cones. J. Math. Anal. Appl. 1983; 93: 273–289.MathSciNetMATHCrossRefGoogle Scholar
  12. Benson HP and Morin TL. The vector maximization problem: proper efficiency and stability. SIAM J. Appl. Math. 1977; 32: 64–72.MathSciNetMATHCrossRefGoogle Scholar
  13. Bergstresser K, Charnes A and Yu PL. Generalization of domination structures and nondomi-nated solutions in multicriteria decision making. J. Optim. Theory Appl. 1976; 18: 3–13.MathSciNetMATHCrossRefGoogle Scholar
  14. Bitran GR and Magnanti TL. The structure of admissible points with respect to cone dominance. J. Optim. Theory Appl. 1979; 29: 573–614.MathSciNetMATHCrossRefGoogle Scholar
  15. Borwein JM. 1. Proper efficient points for maximization with respect to cones. SIAM J. Control Opt. 1977; 15: 57–63.MATHCrossRefGoogle Scholar
  16. Borwein JM. 2. The geometry of Pareto efficiency over cones. Math. Operationsforsch. Scr. Optim. 1980; 11: 235–248.MATHGoogle Scholar
  17. Borwein JM. 3. On the existence of Pareto efficient points. Math. Oper. Res. 1983; 8: 68–75.Google Scholar
  18. Borwein JM and Zhuang DM. 1. Super-efficiency in vector optimization. ZOR — Methods and Models of Operations Research. 1991; 35: 175–184.MathSciNetMATHGoogle Scholar
  19. Borwein JM and Zhuang DM. 2. Super-efficiency in vector optimization. Trans. Amer. Soc. 1993; 338: 105–122.MathSciNetMATHCrossRefGoogle Scholar
  20. Bucur I and Postolica V. A coincidence result between sets of efficient points and Choquet boundaries in separated locally convex spaces. Optimization. 1996; 36: 231–234.MathSciNetMATHCrossRefGoogle Scholar
  21. Cesary L and Suryanarayana MB. Existence theorems for Pareto optimization, multivalued and Banach space valued functional. Trans. Amer. Math. Soc. 1978; 244: 37–65.MathSciNetCrossRefGoogle Scholar
  22. Chen Guang-Ya. On generalized Arrow-Barankin-Blackwell theorems in locally convex spaces. J. Optim. Theory Appl. (in press)Google Scholar
  23. Chen GY and Huang XX. 1. Stability results for Ekeland’s -varational principle for vector valued functions. Math. Meth. Oper. Res. 1998; 48: 97–103.MATHCrossRefGoogle Scholar
  24. Chen GY and Huang XX. 2. A unified approach to the existing three types of variational principles for vector valued functions. Math. Meth. Oper. Res. 1998; 48: 349–357.MATHCrossRefGoogle Scholar
  25. Chew KL. Maximal points with respect to cone dominance in Banach spaces and their existence. J. Optim. Theory Appl. 1984; 44: 1–53.MathSciNetMATHCrossRefGoogle Scholar
  26. Chichilnisky G and Kalman PJ. Applications of functional analysis to models of efficient allocation of economic resourses. J. Optim. Theory Appl. 1980; 30: 19–32.MathSciNetMATHCrossRefGoogle Scholar
  27. Choo EV and Atkins DR. Connectedness in multiple linear fractional programming. Management Science. 1983; 29: 250–255.MathSciNetMATHCrossRefGoogle Scholar
  28. Choquet, G. Lectures on Analysis, Vol. 1–3, Mathematics Lecture Notes Series, New York-Amsterdam: Benjamin, 1969.Google Scholar
  29. Constantinescu G. L’ensemble des fonctions surharmoniques positives sur un esipace harmonique est faiblement complet. C.R.Acad. Sci. Paris. 1970; 271: A549-A551.MathSciNetGoogle Scholar
  30. Corley HW. 1. An existence result for maximization with respect to cones. J. Optim. Theory Appl. 1980; 31: 277–281.MathSciNetMATHCrossRefGoogle Scholar
  31. Corley HW. 2. Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 1986; 120: 528–532.MathSciNetMATHCrossRefGoogle Scholar
  32. Dauer JP and Gallagher RJ. Positive proper efficient points and related cone results in vector optimization theory. SIAM J. Control Opt. 1990; 28: 158–172.MathSciNetMATHCrossRefGoogle Scholar
  33. Dauer JP and Saleh OA. A characterization of proper minimal points as solutions of sublinear optimization problems. J. Math. Anal. Appl. 1993; 178: 227–246.MathSciNetMATHCrossRefGoogle Scholar
  34. Dauer JP and Stadler W. A survey of vector optimization in infinite dimensional spaces. Part II. J. Optim. Theory Appl. 1986; 51: 205–241.MathSciNetMATHCrossRefGoogle Scholar
  35. Durier R and Michelot C. Sets of efficient points in a normed space. J. Mith. Anal. Appl. 1986; 117: 506–528.MathSciNetMATHCrossRefGoogle Scholar
  36. Edwards, R.E. Functional Analysis. New York: Holt Reinhart and Winston, 1965.MATHGoogle Scholar
  37. Ekeland I. 1. Sur les problemes variationnels. C.R. Acad. Sci. Paris. 1972; 275: A1057-A1059.MathSciNetGoogle Scholar
  38. Ekeland I. 2. On some variational principle. J. Math. Anal. Appl. 1974; 47: 324–354.MathSciNetMATHCrossRefGoogle Scholar
  39. Ekeland I. 3. Nonconvex minimization problems. Bull. Amer. Math. Soc. 1979; 1(3): 443–474.MathSciNetMATHCrossRefGoogle Scholar
  40. Ekeland I. 4. Some lemmas about dynamical systems. Math. Scan. 1983; 52: 262–268.MathSciNetMATHGoogle Scholar
  41. Ekeland I. 5. ‘The -variational principle revised’ (notes by S. Terracini). — In: Methods on Nonconvex Analysis, A. Cellina, ed., Lecture Notes in Math. Berlin-Heidelberg: Springer-Verlag, 1990, Nr.1446.- P. 1–15.CrossRefGoogle Scholar
  42. Fan K. Minimax theorems. Proc. Nat. Acad. Sci. U.S.A. 1953; 39: 42–47.MathSciNetMATHCrossRefGoogle Scholar
  43. Ferrot F. 1. A generalization of the Arrow-Barankin-Blackwell theorem in normed spaces. J. Math. Anal. Appl. 1991; 158: 47–54.MathSciNetCrossRefGoogle Scholar
  44. Ferrot F. 2. General form of the Arrow-Barankin-Blackwell theorem in normed spaces and in the l -case. J. Math. Anal. Appl. 1993; 79: 127–138.Google Scholar
  45. Ferrot F. 3. A new ABB theorem in Banach spaces. Preprint, Universita di Genova, Italy, 1999.Google Scholar
  46. Fu WT. On the density of proper efficient points. Proceed. Amer. Math. Soc. 1996; 124: 1213–1217.MATHCrossRefGoogle Scholar
  47. Gallagher RJ and Saleh OA. Two generalizations of a theorem of Arrow-Barankin-Blackwell. SIAM J. Control Opt. 1993; 31: 247–256.MathSciNetMATHCrossRefGoogle Scholar
  48. Georffrion AM. Proper efficiency and the theory of vector maximization. J. Math. Anal. Appl. 1968; 22: 618–630.MathSciNetCrossRefGoogle Scholar
  49. Gopfert A and Tammer Chr. 1. A new maximal point theorem. ZAA. 1995; 14: 379–390.MathSciNetGoogle Scholar
  50. Gopfert A and Tammer Chr. 2. “-Approximate solutions and conicall support points. A new maximal point theorem”. Preprint, University of Halle, Germany, 1997.Google Scholar
  51. Gopfert A and Tammer Chr. 3. “Maximal point theorems in product spaces and applications for multicriteria approximation problems”. Preprint Nr.26, University of Halle, Germany, 1998.Google Scholar
  52. Gopfert A, Tammer Chr. and Zalinescu C. 1. “On the vectorial Ekeland’s variational principle and minimal points in product spaces.” Preprint, University of Halle, Germany, 1998.Google Scholar
  53. Gopfert A, Tammer Chr. and Zalinescu C. 2. “Maximal point theorems in product spaces.” Preprint, University of Halle, Germany, 1998.Google Scholar
  54. Gopfert A, Sekatzek M and Tammer Chr. “Novelties around Ekeland’s variational principle.” Preprint, University of Halle, Germany, 1999.Google Scholar
  55. Gong XH. Connectedness of efficient solution set for set-valued maps in normed spaces. J. Optim. Theory Appl. 1994; 83: 83–96.MathSciNetMATHCrossRefGoogle Scholar
  56. Gotz A and Jahn J. The Lagrange multiplier rule in set-valued optimization. (To appear in SIAM J. Opt.)Google Scholar
  57. Guerraggio A, Molho E and Zaffaroni A. On the notion of proper efficiency in vector optimization. J. Optim. Theory Appl. 1994; 82: 1–21.MathSciNetMATHCrossRefGoogle Scholar
  58. Hartley R. On cone-efficiency, cone-convexity and cone-compactness. SIAM J. Appl. Math. 1978; 34: 211–222.MathSciNetMATHCrossRefGoogle Scholar
  59. Henig MI. 1. Proper efficiency with respect to cones. J. Optim. Theory Appl. 1982; 36: 387–407.MathSciNetMATHCrossRefGoogle Scholar
  60. Henig MI. 2. Existence and characterization of efficient decisions with respect to cones. Math. Programming. 1982; 23: 111–116.MathSciNetMATHCrossRefGoogle Scholar
  61. Hurwicz L. ‘Programming in Linear Spaces’.- In: Studies in Linear and Nonlinear Programming, K.J. Arrow, L. Hurwicz and H. Uzawa, eds., Stanford: Standford University Press, 1958.Google Scholar
  62. Hyers, D.H., Isac, G. and Rassias, Th.M. Topics in Nonlinear Analysis and Applications. New Jersey-London-Hong Kong: World Scientific, Singapore, 1997.MATHCrossRefGoogle Scholar
  63. Isac, G. 1. Cônes Localment Bornés et Cônes Complètement Réguliers. Application a l’Analyse Nonlinéare. Seminaire d’Analyse Moderne Nr.17, Université de Sherbrooke, 1980.Google Scholar
  64. Isac, G. 2. The (M)-(L) type duality for locally convex lattices. Rev. Roumaine Math. Pures Appl. 1971; 16: 217–223.MathSciNetMATHGoogle Scholar
  65. Isac, G. 3. Sur l’éxistence de l’optimum de Pareto. Rèv. Mat. Univ. Parma. 1983; (4) 9: 303–325.MathSciNetGoogle Scholar
  66. Isac, G. 4. Un critère de sommabilité absolue dans les espaces localement con vexes ordonnés: cônes nucléaires. Mathematica. 1983; 25(48): 159–169.MathSciNetGoogle Scholar
  67. Isac, G. 5. Supernormal cones and absoulte summability. Libertas Math. 1985; 5: 17–31.MathSciNetMATHGoogle Scholar
  68. Isac, G. 6. Supernormal cones and fixed point theory. Rocky Mountain J. Math. 1987; 17: 219–226.MathSciNetMATHCrossRefGoogle Scholar
  69. Isac, G. 7. Pareto optimization in infinite dimensional spaces: the importance of nuclear cones. J. Math. Anal. Appl. 1994; 182: 393–404.MathSciNetMATHCrossRefGoogle Scholar
  70. Isac, G. 8. ‘The Ekeland’s principle and Pareto -efficiency’. — In: Multi-Objective Programming and Goal Programming, M. Tamiz, ed., Lecture Notes in Econom. Math. Systems Nr.432, Springer-Verlag, 1996. — P. 148–162.CrossRefGoogle Scholar
  71. Isac, G. 9. Ekeland’s principle and nuclear cones: a geometrical aspect. Math. Comput. Modelling. 1997; 26: 111–116.MathSciNetMATHCrossRefGoogle Scholar
  72. Isac, G. 10. “On Pareto efficiency. A general constructive existence principle.” Preprint, 1998.Google Scholar
  73. Isac, G. and Postolica, V. The Best Approximation and Optimization in Locally Convex Spaces, Verlag Peter Lang: Approximation and Optimization, Vol.2, Frankfurt am Main, 1993.MATHGoogle Scholar
  74. Isermann H. Proper efficiency and the linear vector maximum problem. Operations Res. 1974; 22: 189–191.MathSciNetMATHCrossRefGoogle Scholar
  75. Jahn J. 1. Existence theorems in vector optimization. J. Optim. Theory Appl. 1986; 50: 397–406.MathSciNetMATHCrossRefGoogle Scholar
  76. Jahn J. 2. Mathematical Vector Optimization in Partially Ordered Linear Spaces, Frankfurt: Peter Lang, 1986.MATHGoogle Scholar
  77. Jahn J. 3. A generalization of a theorem of Arrow, Barankin and Blackwell. SLAM J. Control and Opt. 1988; 26: 999–1005.MathSciNetMATHCrossRefGoogle Scholar
  78. Jameson, G.O. Ordered Linear Spaces, Springer-Verlag, Lecture Notes in Mathematics Nr.141, 1970.MATHGoogle Scholar
  79. Karlin S. Positive operators. J. Math. Mech. 1959; 8: 907–937.MathSciNetMATHGoogle Scholar
  80. Klinger A. Improper solutions of the vector maximum problem. Operations Research. 1967; 15: 570–572.MATHCrossRefGoogle Scholar
  81. Krasnoselskii, M.A., Lifshits, Je.A. and Sobolev, A.V. Positive Linear Systems. The Method of Positive Operators. Berlin: Heldermann Verlag, 1989.Google Scholar
  82. Krein MG and Rutman MA. Linear operators which leave a cone in a Banach space invariant. Uspeki Mat. Nauk. 1948; 3: 3–95.MathSciNetMATHGoogle Scholar
  83. Kuhn HW and Tucker AW. ‘Nonlinear Programming’.- In: Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman, ed., University of California Press, Berkeley, Ca, 1950. P. 481–492.Google Scholar
  84. Loridan P. -solution in vector minimization problems. J. Opt. Theory Appl. 1984; 42: 265–276.MathSciNetCrossRefGoogle Scholar
  85. Luc DT. 1. An existence theorem in vector optimization. Math. Oper. Res. 1989; 14: 693–699.MathSciNetMATHCrossRefGoogle Scholar
  86. Luc DT. 2. Contractibility of efficient point sets in normed spaces. Nonlinear Anal. Theory Math. Appl. 1990; 15: 527–535.MATHCrossRefGoogle Scholar
  87. Luc DT. 3. Recession cones and the domination property in vector optimization. Math. Programming. 1991; 49: 113–122.CrossRefGoogle Scholar
  88. Luc DT. 4. Theory of Vector Optimization, Lecture Notes in Economics and Math. Systems, Vol. 319. New York — Berlin: Springer-Verlag, 1989.CrossRefGoogle Scholar
  89. Luc DT. 5. On the domination property in vector optimization. J. Opt. Theory Appl. 1984; 43: 327–330.MathSciNetMATHCrossRefGoogle Scholar
  90. Luc DT. 6. Connectedness of the efficient point sets in quasiconcave vector maximization. J. Math. Anal. Appl. 1987; 12: 346–354.MathSciNetCrossRefGoogle Scholar
  91. Luc DT. 7. Structure of the efficient point set. Proc. Amer. Math. Soc. 1985; 19: 433–440.CrossRefGoogle Scholar
  92. Luc DT. 8. Scalarization of vector optimization problems. J. Optim. Theory Appl. 1987; 55: 85–102.MathSciNetMATHCrossRefGoogle Scholar
  93. Majundar M. Some general theorems on efficiency prices with an infinite dimensional commodity space. J. Econom. Theory. 1972; 5: 1–13.MathSciNetCrossRefGoogle Scholar
  94. Makarov EK and Rachkovski NN. Density theorems for generalized Henig proper efficiency. J. Optim. Theory Appl. 1996; 91: 419–437.MathSciNetMATHCrossRefGoogle Scholar
  95. Marinescu, Gh. Espaces Pseudotopologiques et Thiorie des Distributions. Berlin: D.V.W., 1963.Google Scholar
  96. Molho, E. and Zaffaroni, A. ‘Quasiconvexity of sets and connectedness of the efficient frontier in ordered vector spaces’.- In: Generalized Convexity, Generalized Monotonicity: Recent Results, J.P. Crouzeix et al., eds., Dordrecht: Kluwer Academic Publishers, 1998.- P. 408–424.Google Scholar
  97. Mokobodski, G. 1. ‘Cônes normaux et éspaces nucléaires: Cônes semi-complets’. — In: Seminaire Choquet, Iniation a l’Analyse 7-ème Année, 1967/1968, B-6.Google Scholar
  98. Mokobodski, G. 2. ‘Principe de Balayage, principe de domination’. In: Seminaire de Choquet 1, 1967/1968, B-6.Google Scholar
  99. Morozov VV. On properties of the set of nondominated vectors. Vestnik Moskov. Univ. Comput. Sci. Cyber. 1977; 4: 51–61.Google Scholar
  100. Naccache PH. Connectedness of the set of nondominated outcomes in multicriteria optimization. J. Optim. Theory Appl. 1978; 25: 459–467.MathSciNetMATHCrossRefGoogle Scholar
  101. Nachbin, L. Topology and Order. New York: Van Nostrand, 1965.MATHGoogle Scholar
  102. Németh AB. Between Pareto efficiency and Pareto -efficiency. Optimization. 1989; 20: 615–637.MathSciNetMATHCrossRefGoogle Scholar
  103. Pareto, V. 1. Manuale di Economia Politica. Società Editrice Libraria, Milano, Italy (1906); Piccola Biblioteca Scientifica Nr.13, Societa Editrice Libraria Milano, Italy, 1919.Google Scholar
  104. Pareto, V. 2. Sociological Writings. Selected and introduced by S. E. Finer, Translated by D. Mirfin, Frederick A. Praeger, New York, New York, 1966.Google Scholar
  105. Peleg B. Topological properties of the efficient points set. Proc. Amer. Math. Soc. 1972; 35: 531–536.MathSciNetMATHCrossRefGoogle Scholar
  106. Penot JP. L’optimization à la Pareto: Deux ou trois chose que je sais d’elle. Publ. Math. Univ. Pan, 1978.Google Scholar
  107. Peressini, A.L. Ordered Topological Vector Spaces. New York: Harper and Row Publisher, 1967.MATHGoogle Scholar
  108. Petschke M. On a theorem of Arrow, Barankin and Blackwell. SIAM J. Control Opt. 1990; 28: 395–401.MathSciNetMATHCrossRefGoogle Scholar
  109. Pontini C. Inclusion theorems for non-explosive and strongly exposed cones in normed spaces. J. Math. Anal. Appl. 1990; 148: 275–286.MathSciNetMATHCrossRefGoogle Scholar
  110. Popovici N. ‘Contribution à l’Optimization Vectorielle’, Thèse, Université de Limoges, France, 1995.Google Scholar
  111. Postolica V. 1. Vectorial optimization programs with multifunctions and duality. Ann. Sci. Math. Quebec 1986; 10: 85–102.MathSciNetMATHGoogle Scholar
  112. Postolica V. 2. ‘Some existence results concerning the efficient points in locally convex spaces’. — In: Babes-Bolyai Univ. Faculty of Math., Seminar on Math. Analysis, 1987. -P. 715–80.Google Scholar
  113. Postolica V. 3. ‘Existence results for the efficient points in locally convex spaces ordered by supernormal cones and con ically bounded sets’. -In: Babes-Bolyai Univ. Faculty of Math., Seminar on Math. Anal., 1988. — P. 187–192.Google Scholar
  114. Postolica V. 4. Existence conditions of efficient points for multifunctions with values in locally convex spaces. Stud. Cere. Mat. 1989; 41: 325–331.MathSciNetMATHGoogle Scholar
  115. Postolica V. 5. New existence results for efficient points in locally convex spaces ordered by supernormal cones. J. Global Optim. 1993; 3: 233–242.MathSciNetMATHCrossRefGoogle Scholar
  116. Postolica V. 6. Properties of Pareto sets in locally convex spaces. Optimization 1995; 34: 223–229.MathSciNetMATHCrossRefGoogle Scholar
  117. Postolica V. 7. An extension to sets of supernormal cones and generalized subdifferential. Optimization. 1994; 29: 131–139.MathSciNetMATHCrossRefGoogle Scholar
  118. Postolica V. 8. “Recent conditions for Pareto efficiency in locally convex spaces”. Preprint, 1997.Google Scholar
  119. Preocupanu Th. Scalar minimax properties in vectorial optimization. International Series of Numerical Mathematics. 1992; 107: 299–306.Google Scholar
  120. Radner, R. ‘A note on maximal points of convex sets in l ’. — In: Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, CA, 1967. — P. 351–354.Google Scholar
  121. Rudin, W. Functional Analysis. New York: McGraw-Hill, 1973.MATHGoogle Scholar
  122. Salz W. Eine topologische Eigenschaft der effizienten Punkte konvexer Mengen. Operat. Res. Verfahren. 1976; 23: 197–203.Google Scholar
  123. Sawaragi, Y., Nakayama, H. and Tanino, T. Theory of Multiobjective Optimisation. Academic Press, 1985.Google Scholar
  124. SchafFer, H.H. Topological Vector Spaces. New York: MacMillan Company, 1966.Google Scholar
  125. Song W. Generalization of the Arrow-Barankin-Blackwell theorem in a dual space setting. J. Optim. Theory Appl. 1997; 95: 225–230.MathSciNetMATHCrossRefGoogle Scholar
  126. Stadler W. A survey of multicriteria optimization or the vector maximum problem. Part (I): 1776–1960. J. Optim. Theory Appl. 1979; 29: 1–52.MathSciNetMATHCrossRefGoogle Scholar
  127. Staib T. On two generalization of Pareto minimality. J. Optim. Theory Appl. 1988; 59: 289–306.MathSciNetMATHGoogle Scholar
  128. Sterna-Karwat A. 1. On existence of cone-maximal points in a real topological linear spacte. Israel J. Math. 1986; 54: 33–41.MathSciNetMATHCrossRefGoogle Scholar
  129. Sterna-Karwat A. 2. ‘On the existence of cone-efficient points’. — In: Recent Advances and Historical Development of Vector Optimization, J. Jahn and W. Krabs, eds., Lecture Notes in Economics and Mathematical Systems, Nr. 294, Springer-Verlag, 1986. — P. 233–240.Google Scholar
  130. Tammer, Chr. 1. ‘Existence results and necessary conditions for -efficient elements’. -In: Multicriteria Decision-Proceedings of the 14-th Meeting of the German Working Group “Mehrhriterielle Entsch”, Brosowski e.a., eds., Frankfurt/Main-Bern: Lang-Verlag, 1993. — P. 97–110.Google Scholar
  131. Tammer, Chr. 2. “A variational principle and applications for vectorial control approximation problems”. Report Nr.9, 1996, Martin-Luher-Universitat, Halle-Wittenberg, Germany.Google Scholar
  132. Tammer, Chr. 3. “Approximate solutions of vector-valued control-approximation problems”. Report Nr.27, 1996, Martin-Luher-Universitat, Halle-Wittenberg, Germany.Google Scholar
  133. Tang Y. Conditions for constrained efficient solutions of multiobjective problems in Banach spaces. J. Math. Anal. Appl. 1983; 96: 505–519.MathSciNetMATHCrossRefGoogle Scholar
  134. Trevis, F. Locally Convex Spaces and Linear Partial Differential Equations. New York: Springer-Verlag, 1967.CrossRefGoogle Scholar
  135. Truong XDH. 1. On the existence of efficient points in locally convex spaces. J. Global Optim. 1994; 4: 265–278.MathSciNetMATHCrossRefGoogle Scholar
  136. Truong XDH. 2. A note on a class of cones ensuring the existence of efficient points in bounded complete sets. Optimization. 1994; 31: 141–152.MathSciNetMATHCrossRefGoogle Scholar
  137. Truong XDH. 3. Cones admitting strictly positive functionals and scalarization of some vector optimization problems. J. Optim. Theory Appl. 1997; 93: 355–372.MathSciNetMATHCrossRefGoogle Scholar
  138. Truong XDH. 4. “Existence and density results for proper efficiency in cone compact sets”. Preprint, Hanoi Institute of Mathematics, 1999.Google Scholar
  139. Valyi, I. ‘Approximate solutions of vector optimization problems’. — In: Systems Analysis and Simulation, A. Sydow, M. Thoma and R. Vychnevetski, eds., Berlin DDR: Akademic-Verlag, Vol. 1, 1985. — P. 246–250.Google Scholar
  140. Varaiya PP. Nonlinear programming in Banach spaces. SIAM J. Appl. Math. 1967; 15: 284–293.MathSciNetMATHCrossRefGoogle Scholar
  141. Vogel, W. ‘Vektoroptimierung in Produktraumen’, Math. Systems in Economics 35, Verlag Anton Hain, Meisenheim am Glan, 1977.Google Scholar
  142. Wagner DH, Semi-compactness with respect to an Euclidean cone. Canad. J. Math. 1997; 29: 29–36.CrossRefGoogle Scholar
  143. Wantao F. On the density of proper efficient points. Proc. Amer. Math. Soc. 1996; 124: 1213–1217.MathSciNetMATHCrossRefGoogle Scholar
  144. Warburton AR. Quasiconcave vector maximization: connectedness of the sets of Pareto optimal and weak Pareto optimal alternatives. J. Optim. Theory Appl. 1983; 40: 537–557.MathSciNetMATHCrossRefGoogle Scholar
  145. Wong, Y.Ch. Schwartz Spaces, Nuclear Spaces and Tensor Product, Lecture Notes in Math. Vol. 726. New York — Berlin: Springer-Verlag, 1979.Google Scholar
  146. Yu PL. Cone convexity, cone extreme points and nondominated solutions in decision problems with multiobjective. J. Optim. Theory Appl. 1974; 14: 319–377.MATHCrossRefGoogle Scholar
  147. Zheng XY. 1. Proper efficiency in locally convex topological vector spaces. J. Optim. Theory Appl. 1997; 94: 469–486.MathSciNetMATHCrossRefGoogle Scholar
  148. Zheng XY. 2. The domination property for efficiency in locally convex topological vector spaces. J. Math. Anal. Appl. 1997; 213: 455–467.MathSciNetMATHCrossRefGoogle Scholar
  149. Zhuang DM. 1. Bases of convex cones and Borwein’s proper efficiency. J. Optim. Theory Appl. 1991; 71: 613–620.MathSciNetMATHCrossRefGoogle Scholar
  150. Zhuang DM. 2. Density results for proper efficiency. SIAM J. Control Opt. 1994; 32: 51–58.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • G. Isac
    • 1
  • V. A. Bulavsky
    • 2
  • V. V. Kalashnikov
    • 2
  1. 1.Department of Mathematics and Computer ScienceRoyal Military College of CanadaKingstonCanada
  2. 2.Central Economics Institute (CEMI) of Russian Academy of SciencesMoscowRussia

Personalised recommendations