Skip to main content

A Generalization of E. Lehmer’s Congruence and Its Applications

  • Chapter
  • 685 Accesses

Part of the book series: Developments in Mathematics ((DEVM,volume 6))

Abstract

In this paper we announce the result that for any odd n > 1, \( \sum\limits_{\scriptstyle i = 1 \hfill \atop \scriptstyle (i,n) = 1 \hfill} ^{\left( {n - 1} \right)/2} {\frac{1}{i} \equiv - 2{q_2}(n) + nq_2^2} (n)\quad (\bmod \;{n^2}), \) where \( {q_r}(n) = ({r^{\phi (n)}} - 1)/n,{\text{ (r, n) = 1}} \) is Euler’s quotient of n with base r, which is a generalization of E. Lehmer’s congruence. As applications, we mention some generalizations of Morley’s congruence and Jacobstahl’s Theorem to modulo arbitary positive integers. The details of the proof will partly appear in Acta Arithmetica.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Cai and A. Granville, On the residue of binomial coefficients and their products modulo prime powers,preprint.

    Google Scholar 

  2. J. W. L. Glaisher, Quart. J. Math., 32 (1901), 271–305.

    Google Scholar 

  3. R. Guy, Unsolved problems in number theory, Springer-Verlag, Second Edition, 1994.

    MATH  Google Scholar 

  4. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, Fourth Edition, 1971.

    Google Scholar 

  5. E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math., 39 (1938), 350–359.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. J. McIntosh, On the converse of Wolstenholmes theorem, Acta Arith., 71 (1995), 381–389.

    MathSciNet  Google Scholar 

  7. F. Morley, Note on the congruence 2 4 n–(-1)n(2n)!/(n!) 2, where 2n + 1 is prime, Ann. of Math., 9 (1895), 168–170.

    MATH  Google Scholar 

  8. P. Ribenboim, The new book of prime number records, Springer-Verlag, Third Edition, 1996.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cai, T. (2002). A Generalization of E. Lehmer’s Congruence and Its Applications. In: Jia, C., Matsumoto, K. (eds) Analytic Number Theory. Developments in Mathematics, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3621-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3621-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5214-1

  • Online ISBN: 978-1-4757-3621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics