Skip to main content

On Covering Equivalence

  • Chapter
Book cover Analytic Number Theory

Part of the book series: Developments in Mathematics ((DEVM,volume 6))

Abstract

An arithmetic sequence EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$a\left( n \right)=\left\{ a+nx:x\in \mathbb{Z} \right\}\left( 0\le a<n \right)$$ with weight λ ∈ ℂ is denoted by (λ, a, n). For two finite systems EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$A=\left\{ \left\langle {{\lambda }_{s}},{{a}_{s}},{{n}_{s}} \right\rangle \right\}_{s=1}^{k}$$ and EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$B=\left\{ \left\langle {{\mu }_{t}},{{b}_{t}},{{m}_{t}} \right\rangle \right\}_{t=1}^{l}$$ of such triples, if EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiabgU % caRiaadkeaaaa!3864!]></EquationSource><EquationSource Format="TEX"><![CDATA[$$\sum{_{{{n}_{s}}|x-{{a}_{s}}}{{\lambda }_{s}}}=\sum{_{{{m}_{t}}|x-{{b}_{t}}}}{{\mu }_{t}}$$ for all x ∈ ℤ then we say that A and B are covering equivalent. In this paper we characterize covering equivalence in various ways, our characterizations involve the Γ-function, the Hurwitz ζ-function, trigonometric functions, the greatest integer function and Egyptian fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bass, Generators and relations for cyclotomic units,Nagoya Math. J. 27 (1966), 401–407. MR 34#1298.

    Google Scholar 

  2. H. Bateman, Higher Transcendental Functions (edited by Erdélyi et al), Vol I, McGraw-Hill, 1953, Chapters 1 and 2.

    Google Scholar 

  3. J. Beebee, Some trigonometric identities related to exact covers, Proc. Amer. Math. Soc. 112 (1991), 329–338. MR 91i: 1 1013.

    Google Scholar 

  4. J. Beebee, Bernoulli numbers and exact covering systems, Amer. Math. Monthly 99 (1992), 946–948. MR 93i: 1 1025.

    Google Scholar 

  5. J. Beebee, Exact covering systems and the Gauss-Legendre multiplication formula for the gamma function, Proc. Amer. Math. Soc. 120 (1994), 1061–1065. MR 94f: 33001.

    Google Scholar 

  6. S. D. Chowla, The nonexistence of nontrivial linear relations between the roots of a certain irreducible equation,J. Number Theory 2 (1970), 120–123. MR 40#2638.

    Google Scholar 

  7. E. Y. Deeba and D. M. Rodriguez, Stirling’s series and Bernoulli numbers, Amer. Math. Monthly 98 (1991), 423–426. MR 92g: 1 1025.

    Google Scholar 

  8. V. Ennola, On relations between cyclotomic units,J. Number Theory 4 (1972), 236–247. MR 45#8633 (E 46#1754).

    Google Scholar 

  9. P. Erdös, On integers of the form 2k +p and some related problems, Summa Brasil. Math. 2 (1950), 113–123. MR 13, 437.

    Google Scholar 

  10. A. S. Fraenkel, A characterization of exactly covering congruences,Discrete Math. 4 (1973), 359–366. MR 47#4906.

    Google Scholar 

  11. A. S. Fraenkel, Further characterizations and properties of exactly covering congruences,Discrete Math. 12 (1975), 93–100, 397. MR 51#10276.

    Google Scholar 

  12. R. K. Guy, Unsolved Problems in Number Theory (2nd edition), Springer-Verlag, New York, 1994, Sections A19, B21, E23, F13, F14.

    Google Scholar 

  13. D. S. Kubert, The universal ordinary distribution, Bull. Soc. Math. France 107 (1979), 179–202. MR 81b: 1 2004.

    Google Scholar 

  14. S. Lang, Cyclotomic Fields II (Graduate Texts in Math.; 69), Springer -Verlag, New York, 1980, Ch. 17.

    Google Scholar 

  15. D. H. Lehmer, A new approach to Bernoulli polynomials, Amer. Math. Monthly 95 (1988), 905–911. MR 90c: 1 1014.

    Google Scholar 

  16. J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities, Enseign. Math. 29 (1983), 281–322. MR 86d: 1 1007.

    Google Scholar 

  17. T. Okada, On an extension of a theorem of S. Chowla, Acta Arith. 38 (1981), 341–345. MR 83b: 10014.

    Google Scholar 

  18. S. Porubskÿ, Covering systems and generating functions,Acta Arith. 26 (1975), 223–231. MR 52#328.

    Google Scholar 

  19. S. Porubskÿ, On m times covering systems of congruences,Acta Arith. 29 (1976), 159–169. MR 53#2884.

    Google Scholar 

  20. S. Porubskÿ, A characterization of finite unions of arithmetic sequences, Discrete Math. 38 (1982), 73–77. MR 84a: 10057.

    Google Scholar 

  21. S. Porubskÿ, Identities involving covering systems I, Math. Slovaca 44 (1994), 153–162. MR 95f: 1 1002.

    Google Scholar 

  22. S. Porubskÿ, Identities involving covering systems II, Math. Slovaca 44 (1994), 555–568.

    Google Scholar 

  23. Porubskÿ and J. Schönheim, Covering systems of Paul Erdös: past, present and future, preprint, 2000.

    Google Scholar 

  24. S. K. Stein, Unions of arithmetic sequences,Math. Ann. 134 (1958), 289–294. MR 20#17.

    Google Scholar 

  25. Z. W. Sun, Systems of congruences with multipliers, Nanjing Univ. J. Math. Biquarterly 6 (1989), no. 1, 124–133. Zbl. M. 703.11002, MR 90m: 1 1006.

    Google Scholar 

  26. Z. W. Sun, Several results on systems of residue classes, Adv. in Math. (China) 18 (1989), no. 2, 251–252.

    Google Scholar 

  27. Z. W. Sun, On exactly m times covers, Israel J. Math. 77 (1992), 345–348. MR 93k: 1 1007.

    Google Scholar 

  28. Z. W. Sun, Covering the integers by arithmetic sequences, Acta Arith. 72 (1995), 109–129. MR 96k: 1 1013.

    Google Scholar 

  29. Z. W. Sun, Covering the integers by arithmetic sequences II, Trans. Amer. Math. Soc. 348 (1996), 4279–4320. MR 97c: 1 1011.

    Google Scholar 

  30. Z. W. Sun, Exact m-covers and the linear form E x s /n s, Acta Arith. 81 (1997), 175–198. MR 98h: 1 1019.

    Google Scholar 

  31. Z. W. Sun, On covering multiplicity, Proc. Amer. Math. Soc. 127 (1999), 1293–1300. MR 99h: 1 1012.

    Google Scholar 

  32. Z. W. Sun, Products of binomial coefficients modulo p2, Acta Arith. 97 (2001), 87–98.

    Google Scholar 

  33. Z. W. Sun, Algebraic approaches to periodic arithmetical maps, J. Algebra 240 (2001), no. 2, 723–743.

    Google Scholar 

  34. H. Walum, Multiplication formulae for periodic functions, Pacific J. Math. 149 (1991), 383–396. MR 92c: 1 1019.

    Google Scholar 

  35. Š. Znám, Vector-covering systems of arithmetic sequences,Czech. Math. J. 24 (1974), 455–461. MR 50#4520.

    Google Scholar 

  36. Š. Znám, On properties of systems of arithmetic sequences,Acta Arith. 26 (1975), 279–283. MR 51#329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sun, ZW. (2002). On Covering Equivalence. In: Jia, C., Matsumoto, K. (eds) Analytic Number Theory. Developments in Mathematics, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3621-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3621-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5214-1

  • Online ISBN: 978-1-4757-3621-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics