Skip to main content

Abstract

Synthetic aperture processing for seabed imaging has seen a renewed interest during recent years in both civilian and military applications (see the special issue of the IEEE Journ. of Ocean. Eng. January 1992). Towards the end of the eighties, several prototype systems were developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, A., Lawlor, M., Riyait, V., Hinton, O., and Sharif, B. (1996). A real-time synthetic aperture sonar system. IEE Proceedings on Radar, Sonar and Navigation, 143(3): 169–176. Special issue: Recent Advances in Sonar and Its Applications in the Ocean.

    Article  Google Scholar 

  2. Altes, R. (1976). Sonar for generalized target description and its similarity to animal echolocation systems. J. Acoust. Soc. Am., 59 (1): 97–105.

    Article  MathSciNet  Google Scholar 

  3. Altes, R. and Reese, W. (1975). Doppler tolerant classification of distributed targets a bionic sonar. 11(5): 708–722.

    Google Scholar 

  4. Bilge, H., Karaman, M., and O’Donnel, M. (1996). Motion estimation using common spatial frequencies in synthetic aperture imaging. In IEEE Int. Ultrason. Symp, pp. 1551–1554, San Antonio, Texas (USA).

    Google Scholar 

  5. Blacknell, D. and Quegan, S. (1990). Motion compensation of airborne synthetic aperture radar using autofocus. J. Geophys. of Res., 7(3):168–182.

    Google Scholar 

  6. Bouhier, M. and Zakharia, M. (1990). ACID: A MAST project on ACoustical Imaging Development. Oceanology International 90, Brighton (United Kingdom).

    Google Scholar 

  7. Châtillon, J. (1994). Application de la synthèse d’ouverture en sonar actif. PhD thesis, INSA de Lyon (France).

    Google Scholar 

  8. Châtillon, J., Adams, A., Lawlor, M., and Zakharia, M. (1999). SAMI: A low frequency prototype for mapping and imaging of the seabed by means of synthetic aperture. IEEE J. on Ocean. Eng., 24(1): 4–15.

    Article  Google Scholar 

  9. Châtillon, J., Bouhier, M., and Zakharia, M. (1992). Synthetic aperture sonar for seabed imaging: Relative merits of narrow band and wideband approaches. IEEE J. on Ocean. Eng. 1 17(1): 95–105.

    Article  Google Scholar 

  10. Châtillon, J. and Zakharia, M. (1996). Self-focusing of synthetic aperture sonar in case of bottom reverberation. In Papadakis J., Editor, Third European Conference on Underwater Acoustics, pp. 433–438, Heraklio, Crete, Greece. European Commission, Brussels, Belgium.

    Google Scholar 

  11. Châtillon, J. and Zakharia, M. (1996). Validation of bathymetry algorithms using wideband synthetic aperture techniques by means of tank experiments. In Papadakis, J., editor, Third European Conference on Underwater Acoustics, pp. 427–431, Heraklio, Crete, Greece. European Commission, Brussels, Belgium.

    Google Scholar 

  12. Châtillon, J., Zakharia, M., and Bouhier, M. (1991). Quantification of the quality of images obtained by synthetic aperture sonar. Proc. of the IOA, 13(9), pp. 147–152.

    Google Scholar 

  13. Châtillon, J., Zakharia, M., and Bouhier, M. (1991). Synthèse d’ouverture en acoustique sous-marine: influence de l’effet Doppler différentiel. In proc. of Treizième Colloque du Groupe de Recherche et d’Etude de Traitement du Signal-GRETSI-, pp. 601–604, Juan-les-Pins (France).

    Google Scholar 

  14. Châtillon J., Zakharia, M., and Bouhier, M. (1992). Navigation inaccuracies in synthetic aperture sonar: simulations and experiments. In Undersea Defence Technology ’92, pp. 553–557, London (United Kingdom). Microwave Exhibitions and Publishers Ltd.

    Google Scholar 

  15. Châtillon, J., Zakharia, M. and Bouhier, M. (1994). Self-focusing of synthetic aperture sonar: Validation from sea data. In Bjørnø, L., editor, Second European Conference on Underwater Acoustics, pp. 727–731, Lyngby (Denmark). European Commission, Brussels, (Belgium).

    Google Scholar 

  16. Curlander, J. and McDonough, R. (1991). Synthetic Aperture Radar. John Wiley, New-York. 647 p.

    MATH  Google Scholar 

  17. Cutrona, L. (1975). Comparison of sonar system performance achievable using synthetic aperture techniques with the performance achievable by more convention al means. J. Acoust. Soc. Am., 58(2): 336–348.

    Article  Google Scholar 

  18. de Heering, P. Simmer, K., Ochieng-Ogolla, E., and Wasiljeff, A. (1994). A deconvolution algorithm for broadband synthetic aperture data processing. IEEE J. on Ocean. Eng., 19(1):73–83.

    Article  Google Scholar 

  19. Gough, P. and Hayes, M. (1989). Tests results using a prototype synthetic aperture sonar. J. Acoust. Soc. Am., 6(6):2328–2333.

    Article  Google Scholar 

  20. Griffiths, J. and Gida, A. (1984). Use of a BBC microcomputer for synthetic aperture measurements. Proc. Of the IOA 6(6):122–128.

    Google Scholar 

  21. Guyonic, S. (1994). Experiments of a sonar with a synthetic aperture array moving on a rail. In Oceans ’94 Conf Record, pp. 571–576, Brest (France). MTS and IEEE publishers.

    Google Scholar 

  22. Huxtable, B. and Geyer, E. (1993). Motion compensation feasibility for high-resolution synthetic aperture sonar. In Oceans 93 Conf Record, pp. 1.125–1.137. MTS and IEEE publishers.

    Google Scholar 

  23. Johnson, K., Hayes, M., and Gough, P. (1995). A method for estimating the sub-wavelength sway of a sonar towfish. IEEE J. on Ocean. Eng., 20(4):258–267.

    Article  Google Scholar 

  24. Kock, W. (1972). Extending the maximum range of synthetic aperture (hologram) systems. Proc. IEEE (Left.), 60(11):1459:1460.

    Article  Google Scholar 

  25. Lawlor, M., Adams, A., Hinton, O., Riyait, V., and Sharif, B. (1994). Methods for increasing the azimuth resolution and mapping rate of a synthetic aperture sonar. In Oceans 94 Conf. Record, pp. 565–570, Brest (France). MTS and IEEE publishers.

    Google Scholar 

  26. Lawlor, M., Hinton, O., Adams, A., and Sharif, B. (1992). Design of a real-time parallel processing system for synthetic aperture sonar processing. In Undersea Defence Technology 92, pp. 275–280, London (United Kingdom). Microwave Exhibitions and Publishers Ltd.

    Google Scholar 

  27. Loggins, C., Christoff, J., and Pipkin, E. (1982). Results from rail synthetic aperture experiments. J. Acoust. Soc. Am., 71:85. suppl. 1.

    Article  Google Scholar 

  28. Mamode, M. (1981). Estimation optimale de la date d’arrivée d’un écho perturbé par l’effet Doppler. Synthèse de signaux large bande tolérants. PhD thesis, INP Grenoble (France).

    Google Scholar 

  29. Raven, R. (1981). Electronic stabilization for displaced phase centres systems. Technical report. U.S. patent 4244036.

    Google Scholar 

  30. Riyait, V., Lawlor, M., Adams, A., Hinton, O., and Sharif, B. (1994). Comparison of the mapping resolution of the acid synthetic aperture sonar with existing sidescan sonar systems. In Oceans ’94 Conf. Record, pp. 559–564, Brest (France). MTS and IEEE publishers.

    Google Scholar 

  31. Riyait, V., Lawlor M., Adams A., Hinton O., and Sharif, B. (1995). Real-time synthetic aperture sonar imaging using a parallel architecture. IEEE Trans. on Imag. Proc., 4(7): 1010–1019.

    Article  Google Scholar 

  32. Rolt, K., Milgram, J., and Schmidt, H. (1994). Broadband undersampled synthetic aperture arrays: targets stay sharp, aliases smear. Cambridge MA (USA). Acoustical Society of America 127th meeting. Abstract number: 2UW 18.

    Google Scholar 

  33. Rolt, K. and Schmidt, H. (1992). Azimuthal ambiguities in synthetic aperture sonar imagery and synthetic aperture radar imagery. IEEE J. on Ocean. Eng., 17(1):73–79.

    Article  Google Scholar 

  34. Sato, T. and Ikeda O. (1977). Sequential synthetic aperture sonar system a prototype of a synthetic aperture system. IEEE Trans. on Son. and Ultrason., SU-24(4):253–259.

    Article  Google Scholar 

  35. Sheriff, R. (1992). Synthetic aperture beamforming with automatic phase compensation for high frequency sonars. In Symposium on Autonomous Underwater Vehicle Technology, pp. 236–245.

    Google Scholar 

  36. Tonard, v. and Brussieux, M. (1997). Towards development of autofocusing schemes for phase compensation of synthetic aperture sonars. In Oceans 91 Conf Record, pp. 803–808, Halifax (Canada). MTS and IEEE publishers.

    Google Scholar 

  37. Tonard, V. and Châtillon, J. (1997). Acoustical imaging of extended targets by means of synthetic aperture sonar. Acustica united with Acta Acustica, 83(6): 992–997.

    Google Scholar 

  38. Zakharia, M. and Châtillon, J. (1994). A low frequency wideband synthetic aperture sonar prototype. Cambridge MA (USA). Acoustical Society of America 127th. meeting. Abstract number: 4aUW17.

    Google Scholar 

  39. Zakharia, M. and Châtillon, J. (1994). Wideband synthetic aperture sonar for bottom imaging. Theoretical aspects and experimental evaluation. Oceanology International 94, Brighton (United Kingdom). vol. 3.

    Google Scholar 

  40. Zakharia, M. and Châtillon, J. (1995). Synthetic Aperture Mapping and Imaging-SAMI. In Second MAST Days and EUROMAR market, pp. 1161–1171, Sorrento (Italy).

    Google Scholar 

  41. Zakharia, M. and Châtillon, J. (1997). SAMI: a low frequency wideband prototype for synthetic aperture mapping and imaging. Penn State PE (USA). Acoustical Society of America 133rd meeting. Abstract number; 4aUW3.

    Google Scholar 

  42. Zakharia, M. and Guigal, A. (1991). Étude et description de signaux tolérants à l’effet Doppler variable. In 13ème Colloque GRETSI, pp. 597–600, Juan les Pins (FR).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zakharia, M.E., Châtillon, J. (2002). Synthetic aperture mapping and imaging. In: Istepanian, R.S.H., Stojanovic, M. (eds) Underwater Acoustic Digital Signal Processing and Communication Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3617-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3617-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4882-3

  • Online ISBN: 978-1-4757-3617-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics