Prolactin and Growth Hormone Receptors

Signal Transduction and Crosstalk
  • Li-yuan Yu-Lee
  • Sébastien Jeay
Part of the Endocrine Updates book series (ENDO, volume 17)


The pituitary hormones prolactin (PRL) and growth hormone (GH) share structural similarities with the helix bundle helix peptide hormones, many of which are cytokines [1]. The receptors for PRL (PRLR) and GH (GHR) also share structural as well as functional similarities with members of the Class I cytokine receptor or hematopoietin cytokine receptor superfamily. The diverse biological functions of PRL and GH as endocrine hormones as well as autocrine/paracrine cytokines will be discussed. This chapter focuses on the structure/function of the PRLR, the kinase cascades that are activated by both PRL and GH, the known signaling molecules that mediate their functions, and examples of how PRL signaling regulates the expression of target genes. How PRL crosstalks with other cytokine signaling pathway will also be introduced. For more in-depth discussion on PRL and its actions, the readers are referred to Ref. [2] and chapters within. For excellent reviews on GH, its receptor and signaling pathways, the readers are referred to Ref. [3–6].


Growth Hormone Milk Protein Gene Growth Hormone Signaling Growth Hormone Binding Liver Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horseman ND, Yu-Lee L-y. 1994 Transcriptional regulation by the helix bundle peptide hormones: Growth hormone, prolactin, and hematopoietic cytokines. Endocr Rev 15: 627649.Google Scholar
  2. 2.
    Horseman, N. D. ed. 2001 Prolactin. pp 1–416. Boston, Kluwer Academic Publishers.CrossRefGoogle Scholar
  3. 3.
    Herrington J, Smit LS, Schwartz J, Carter-Su C. 2000 The role of Stat proteins in growth hormone signaling. Oncogene 19: 2585–2597.PubMedCrossRefGoogle Scholar
  4. 4.
    Carter-Su C, Rui L, Herrington J. 2000 Role of the tyrosine kinase Jak2 in signal transduction by growth hormone. Pediatr Neurol 14: 550–557.Google Scholar
  5. 5.
    Carter-Su C, Rui L, Stofega MR. 2000 SH2-B and SIRP: Jak2 binding proteins that modulate the actions of growth hormone. Recent Prog Horm Res 55: 293–311.PubMedGoogle Scholar
  6. 6.
    Finidori J. 2000 Regulators of growth hormone signaling. Vitam Horm 59: 71–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Ben-Jonathan N, Mershon J, Allen D, Steinmetz R. 1996 Extrapituitary prolactin: Distribution, regulation, functions and clinical aspects. Endocrine Rev 17: 639–669.Google Scholar
  8. 8.
    Yu-Lee L-y. 1997 Molecular actions of prolactin in the immune system. Proc Soc Exp Biol Med 215: 35–52.Google Scholar
  9. 9.
    Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA. 1998 Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19: 225–268.PubMedCrossRefGoogle Scholar
  10. 10.
    Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, Kelly PA, Ormandy CJ. 1999 Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol 210: 96–106.PubMedCrossRefGoogle Scholar
  11. 11.
    Rosen JM, Wyszomierski SL, Hadsell D. 1999 Regulation of milk protein gene expression. Annu Rev Nutr 19: 407–436.PubMedCrossRefGoogle Scholar
  12. 12.
    Goffin V, Binart N, Clement-Lacroix P, Bouchard B, Bole-Feysot C, Edery M, Lucas BK, Touraine P, Pezet A, Maaskant R, Pichard C, Helloco C, Baran N, Favre H, Bernichtein S, Allamando A, Ormandy C, Kelly PA. 1999 From the molecular biology of prolactin and its receptor to the lessons learned from knockout mice models. Genet Anal Biomol Engin 15: 189–201.CrossRefGoogle Scholar
  13. 13.
    Walker SE, McMurray RW, Houri JM, Allen SH, Keisler D, Sharp GC, Schlechte JA. 1998 Effects of prolactin in stimulating disease activity in systemic lupus erythematosus. Ann New York Acad Sci 840: 762–772.CrossRefGoogle Scholar
  14. 14.
    Elbourne KB, Keisler D, McMurray RW. 1998 Differential effects of estrogen and prolactin on autoimmune disease in the NZB/NZW Fl mouse model of systemic lupus erythematosus. Lupus 7: 420–427.PubMedCrossRefGoogle Scholar
  15. 15.
    Matera L, Mori M, Geuna M. 2000 Prolactin in autoimmunity and antitumor defense. J Neuroimmunol 109: 47–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Goffin V, Kelly PA. 1997 The prolactin/growth hormone receptor family: Structure/function relationships. J Mamm Gland Biol Neoplasia 2: 7–17.Google Scholar
  17. 17.
    Clevenger CV, Chang WP, Ngo W, Pasha TLM, Montone KT, Tomaszweski JE. 1995 Expression of prolactin and prolactin receptor in human breast carcinoma. Am J Pathol 146: 695–705.PubMedGoogle Scholar
  18. 18.
    Gertler A. 1997 Recombinant analogues of prolactin, growth hormone, and placental lactogen: correlations between physical structure, binding characteristics, and activity. J Mamm Gland Biol Neoplasia 2: 69–80.CrossRefGoogle Scholar
  19. 19.
    Yu-Lee L-y, Luo G, Moutoussamy S, Finidori J. 1998 Prolactin and growth hormone signal transduction in lymphohemopoietic cells. Cell Mol Life Sci 54: 1067–1075.CrossRefGoogle Scholar
  20. 20.
    Wang Y, O’Neal KD, Yu-Lee L-y. 1997 Multiple prolactin receptor cytoplasmic residues and Statl mediate prolactin signaling to the IRF-1 promoter. Mol Endocrinol 11: 13531364.Google Scholar
  21. 21.
    McAveney KM, Book ML, Ling P, Horvath G, Chebath J, Yu-Lee L-y. 2000 Association of 2’,5’-oligoadenylate synthetase with the prolactin receptor: Alteration in prolactin-inducible Statl signaling to the IRF-1 promoter. Mol Endocrinol 14: 295–306.PubMedCrossRefGoogle Scholar
  22. 22.
    Schindler C. 1999 Cytokine and Jak-Stat signaling. Exp Cell Res 253: 7–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Bromberg J, Darnell JE, Jr. 2000 The role of STATs in transcriptional control and their impact on cellular function. Oncogene 19: 2468–2473.PubMedCrossRefGoogle Scholar
  24. 24.
    Shuai K. 2000 Modulation of Stat signaling by Stat-interacting proteins. Oncogene 19: 2683–2644.CrossRefGoogle Scholar
  25. 25.
    Horvath CM. 2000 Stat proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25: 496–502.PubMedCrossRefGoogle Scholar
  26. 26.
    Kazansky AV, Kabotyanski E, Wyszomierski SL, Yel J, Rosen JM. 1999 Differential effects of prolactin and src/abl kinase on the nuclear translocation of Stat5b and Stat5a. J Biol Chem 274: 22484–22492.PubMedCrossRefGoogle Scholar
  27. 27.
    Moriggl R, Fouilleux-Gruart V, Jahne R, Berchtold S, Gartmann C, Liu X, Hennighausen L, Sotiropoulos A, Groner B, Gouilleux F. 1996 Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol 16: 5691–5700.PubMedGoogle Scholar
  28. 28.
    Shaefer TS, Sanders LK, Park OK, Nathans D. 1997 Functional differences between Stat3a and Stat313. Mol Cell Biol 17: 5307–5316.Google Scholar
  29. 29.
    Pfeffer LM, Mullersman JE, Pfeffer SR, Murti A, Yang CH. 1997 Stat3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 276: 1418–1420.PubMedCrossRefGoogle Scholar
  30. 30.
    John S, Vinkemeier U, ldaini E, Darnell JE, Jr., Leonard WJ 1999 The significance of tetramerization in promoter recruitment by StatS. Mol Cell Biol 19: 1910–1918.PubMedGoogle Scholar
  31. 31.
    Collum RG, Brutsaer S, Lee G, Schindler C 2000 A Stat3 interacting protein ( StIPI) regulates cytokine signal transduction. Proc Natl Acad Sci 97: 10120–10125.Google Scholar
  32. 32.
    Sekimoto T, Imamoto N, Makajima K, Hirano T, Yoneda Y 1997 Extracellular signal-dependent nuclear import of Statl is mediated by nuclear pore targeting complex formation with NPI-1, but not Rchl. EMBO J 16: 7067–7077.PubMedCrossRefGoogle Scholar
  33. 33.
    Chatterjee-Kishore M, Wright KL, Ting JPY, Stark GR 2000 How Statl mediates constitutive gene expression: a complex of unphosphorylated Statl and IRF1 supports transcription of the LMP2 gene. EMBO J 19: 4111–4122.PubMedCrossRefGoogle Scholar
  34. 34.
    Glass CK, Rose DW, Rosenfeld MG 1997 Nuclear receptor coactivators. Curr Op Cell Biol 9: 222–232.PubMedCrossRefGoogle Scholar
  35. 35.
    Kurokawa R, Kalafus D, Ogliastro MH, Kioussi C, Xu L, Torchia J, Rosenfeld MG, Glass CK. 1998 Differential use of CREB binding protein-coactivator complexes. Science 279: 700–703.PubMedCrossRefGoogle Scholar
  36. 36.
    Pfitzner E, Jahne R, Wissler M, Stoecklin E, Groner B. 1998 p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of StatS, but does not participate in the Stat5mediated suppression of the glucocorticoid response. Mol Endocrinol 12: 1582–1593.Google Scholar
  37. 37.
    Luo G, Yu-Lee L-y. 2000 StatS inhibits NFKB-mediating signaling. Mol Endocrinol 14: 114–123.PubMedCrossRefGoogle Scholar
  38. 38.
    Stevens AM, Wang Y, Sieger KA, Lu H, Yu-Lee L-y. 1995 Biphasic transcriptional regulation of the interferon regulatory factor-1 gene by prolactin: Involvement of gamma-interferon activated sequence and Stat-related proteins. Mol Endocrinol 9: 513–525.Google Scholar
  39. 39.
    Bole-Feysot C, Perret E, Roustan P, Bouchard B, Kelly PA. 2000 Analysis of prolactin-modulated gene expression profiles during the Nb2 cell cycle using differential screening techniques. Genome Biol 1:research0008. 1–0008. 15.Google Scholar
  40. 40.
    DaSilva L, Rui H, Erwin RA, Howard OMZ, Kriken RA, Malabarba MG, Hackett RH, Larner AC, Farrar WL. 1996 Prolactin recruits Statl, Stat3, and StatS independent of conserved receptor tyrosines Tyr402, Tyr479,Tyr515 and Tyr 580. Mol Cell Endocrinol 117: 131–140.PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Yu-Lee L-y. 1996 Multiple Stat complexes interact at the IRF-1 GAS in prolactin-stimulated Nb2 T cells. Mol Cell Endocrinol 121: 19–28.PubMedCrossRefGoogle Scholar
  42. 42.
    Gouilleux F, Wakao H, Mundt M, Groner B. 1994 Prolactin induces phosphorylation of Tyr694 of Stat5 ( MGF), a prerequisite for DNA binding and induction of transcription. EMBO J 13: 4361–4369.Google Scholar
  43. 43.
    Wakao H, Gouilleux F, Groner B. 1994 Mammary gland factor ( MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 13: 2182–2191.Google Scholar
  44. 44.
    Luo G, Yu-Lee L-y. 1997 Transcriptional inhibition by StatS: Differential activities at growth-related versus differentiation-specific promoters. J Biol Chem 272: 26841–26849.Google Scholar
  45. 45.
    Wyszomierski SL, Rosen JM. 2001 Cooperative effects of STATS (Signal Transducer and Activator of Transcription 5) and C/EBPB (CCAAT/Enhancer-Binding Protein-B) on ß-casein gene transcription are mediated by the glucocorticoid receptor. Mol Endocrinol 15: 15 (2): 228–240CrossRefGoogle Scholar
  46. 46.
    Waxman DJ. 2000 Growth hormone pulse-activated STATS signaling: a unique regulatory mechanism governing sexual dimorphism of liver gene expression. Novartis Found Symp 227: 61–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Tanaka N, Taniguchi T. 2000 The interferon regulatory factors and oncogenesis. Semin Cancer Biol 10: 73–81.PubMedCrossRefGoogle Scholar
  48. 48.
    McAlexander MB, Yu-Lee L-y. 2001 Spl is required for prolactin activation of the interferon regulatory factor 1 gene. Mol Cell Endocrinol, in pressGoogle Scholar
  49. 49.
    Carey M. 1998 The enhanceosome and transcriptional synergy. Cell 92: 5–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Ryu S, Zhou S, Ladurner AG, Tijan R. 1999 The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Spl. Nature 397: 446–450.PubMedCrossRefGoogle Scholar
  51. 51.
    McAlexander MB, Yu-Lee L-y. 2001 Prolactin activation of IRF-1 transcription involves changes in histone acetylation. FEBS Lett 488: 91–94.CrossRefGoogle Scholar
  52. 52.
    Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. 1998 Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93: 841–850.PubMedCrossRefGoogle Scholar
  53. 53.
    Hunter T. 1995 Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell 80: 225–236.PubMedCrossRefGoogle Scholar
  54. 54.
    Kim S-O, Jiang J, Yi W, Feng GS, Frank SJ. 1998 Involvement of the Src homology 2-containing tyrosine phosphatase SHP-2 in growth hormone signaling. J Biol Chem 273: 2344–2354.PubMedCrossRefGoogle Scholar
  55. 55.
    Haspel RL, Darnell JE, Jr. 1999 A nuclear tyrosine phosphatase is required for the inactivation of Statl. Proc Natl Acad Sci 96: 10188–10193.PubMedCrossRefGoogle Scholar
  56. 56.
    Naka T, Fujimoto M, Kishimoto T. 1999 Negative regulation of cytokine signaling: Stat-induced Stat inhibitor. Trends Biochem Sci 24: 394–398.Google Scholar
  57. 57.
    Perkins ND. 2000 The Rei/NFKB family: friend and foe. Trends Biochem Sci 25: 434440.Google Scholar
  58. 58.
    Clapp C, Martinez de la Escalera G. 1997 Prolactins: Novel regulators of angiogenesis. News Physiol Sci 12: 231–237.Google Scholar
  59. 59.
    Bengtson NW, Linzer DIH. 2000 Inhibition of tumor growth by the antiangiogenic placental hormone, proliferin-related protein. Mol Endocrinol 14: 1934–1943.PubMedCrossRefGoogle Scholar
  60. 60.
    Struman I, Bentzien F, Lee H, Mainfroid V, Angelo G, Goffin V, Weiner RI, Martial JA. 1999 Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: An efficient mechanism of the regulation of angiogenesis. Proc Natl Acad Sci 96: 1246–1251.Google Scholar
  61. 61.
    Martini J, Piot C, Humeau LM, Stuman I, Martial JA, Weiner RI. 2000 The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 14: 1536–1549.PubMedCrossRefGoogle Scholar
  62. 62.
    Corbacho A, Nava G, Eiserich J, Noris G, Macotela Y, Struman I, Martinez de la Escalera G, Freeman B, Clapp C. 2000 Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J Biol Chem 275: 13183–13186.Google Scholar
  63. 63.
    Mol JA, Henzen-Logmans SC, Hageman P, Misdorp W, Blankenstein MA, Rijnberk A. 1995 Expression of the gene encoding growth hormone in the human mammary gland. J Clin Endocrinol Metab 80: 3094–3096.PubMedCrossRefGoogle Scholar
  64. 64.
    Hattori N, Shimatsu A, Sugita M, Kumagai S, Imura H. 1990 Immunoreactive growth hormone (GH) secretion by human lymphocytes: augmented release by exogenous GH. Biochem Biophys Res Commun 168: 396–401.PubMedCrossRefGoogle Scholar
  65. 65.
    de Mello-Coelho V, Gagnerault MC, Souberbielle JC, Strasburger CJ, Savino W, Dardenne M, Postel-Vinay MC 1998 Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 139: 3837–3842.PubMedCrossRefGoogle Scholar
  66. 66.
    Heim MH. 1999 The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Recept Signal Transduct Res 19: 75–120.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang YD, Wood WI. 1995 Amino acids of the human growth hormone receptor that are required for proliferation and Jak-STAT signaling. Mol Endocrinol 9: 303–311.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang YD, Wong K, Wood WI. 1995 Intracellular tyrosine residues of the human growth hormone receptor are not required for the signaling of proliferation or Jak-STAT activation. J Biol Chem 270: 7021–7024.PubMedCrossRefGoogle Scholar
  69. 69.
    Gouilleux F, Pallard C, Dusanter-Fourt I, Wakao H, Haldosen LA, Norstedt G, Levy D, Groner B. 1995 Prolactin, growth hormone, erythropoietin, and granulocyte-macrophage colony stimulating factor induce MGF-Stat5 DNA binding activity. EMBO J 14: 2005–2013.PubMedGoogle Scholar
  70. 70.
    Rui L, Mathews LS, Hotta K, Gustafson TA, Carter-Su C. 1997 Identification of SH2B13 as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol Cell Biol 17: 6633–6644.PubMedGoogle Scholar
  71. 71.
    Rui L, Carter-Su C. 1999 Identification of SH2-Bß as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci USA 96: 7172–7177.PubMedCrossRefGoogle Scholar
  72. 72.
    Herrington J, Diakonova M, Rui L, Gunter DR, Carter-Su C. 2000 SH2-B is required for growth hormone-induced actin reorganization. J Biol Chem 275: 13126–13133.PubMedCrossRefGoogle Scholar
  73. 73.
    Rui L, Gunter DR, Herrington J, Carter-Su C. 2000 Differential binding to and regulation of JAK2 by the SH2 domain and N-terminal region of SH2–13f3. Mol Cell Biol 20: 3168–3177.PubMedCrossRefGoogle Scholar
  74. 74.
    Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. 1997 Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11: 179–186.PubMedCrossRefGoogle Scholar
  75. 75.
    Waxman DJ, Ram PA, Park SH, Choi HK. 1995 Intermittent plasma growth hormone triggers tyrosine phosphorylation and nuclear translocation of a liver-expressed, Stat 5-related DNA binding protein. Proposed role as an intracellular regulator of male-specific liver gene transcription. J Biol Chem 270: 13262–13270.Google Scholar
  76. 76.
    Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. 1997 Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA 94: 7239–7244.PubMedCrossRefGoogle Scholar
  77. 77.
    Teglung S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G, Ihle JN. 1998 Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93: 841–850.CrossRefGoogle Scholar
  78. 78.
    Ridderstrale M, Tornqvist H. 1994 PI-3-kinase inhibitor Wortmannin blocks the insulin-like effects of growth hormone in isolated rat adipocytes. Biochem Biophys Res Commun 203: 306–310.PubMedCrossRefGoogle Scholar
  79. 79.
    Schwarz Y, Yamaguchi H, Goodman HM. 1992 Growth hormone increases intracellular free calcium in rat adipocytes: correlation with actions on carbohydrate metabolism. Endocrinology 131: 772: 778.Google Scholar
  80. 80.
    Ilondo MM, De Meyts P, Bouchelouche P. 1994 Human growth hormone increases cytosolic free calcium in cultured human IM-9 lymphocytes: a novel mechanism of growth hormone transmembrane signalling. Biochem Biophys Res Commun 202: 391–397.PubMedCrossRefGoogle Scholar
  81. 81.
    Billestrup N, Bouchelouche P, Allevato G, Ilondo M, Nielsen JH. 1995 Growth hormone receptor C-terminal domains required for growth hormone-induced intracellular free Ca2+ oscillations and gene transcription. Proc Natl Acad Sci USA 92: 2725–2729.PubMedCrossRefGoogle Scholar
  82. 82.
    Jeay S, Sonenshein GE, Postel-Vinay MC, Baixeras E. 2000 Growth hormone prevents apoptosis through activation of nuclear factor-kB in interleukin-3-dependent Ba/F3 cell line. Mol Endocrinol 14: 650–661.PubMedCrossRefGoogle Scholar
  83. 83.
    Jeay S, Sonenshein GE, Kelly PA, Postel-Vinay MC, Baixeras E. 2001 Growth hormone exerts antiapoptotic and proliferative effects through two different pathways involving nuclear factor-kB and phosphatidylinositol 3-kinase. Endocrinology 142: 147156Google Scholar
  84. 84.
    Baixeras E, Jeay S, Kelly PA, Postel-Vinay MC. 2001 The proliferative and antiapoptotic actions of growth hormone and insulin-like growth factor-1 are mediated through distinct signaling pathways in the pro-B Ba/F3 cells. Endocrinology 142: 29682977.Google Scholar
  85. 85.
    Sehgal PB. 2000 Stat-signaling through the cytoplasmic compartment: Consideration of a new paradigm. Cell Signal 12: 525–535.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Li-yuan Yu-Lee
    • 1
  • Sébastien Jeay
    • 2
  1. 1.Departments of Medicine, Molecular & Cellular Biology, and Immunology, and Cell & Molecular Biology ProgramBaylor College of MedicineHoustonUSA
  2. 2.INSERM Unit 344, Molecular EndocrinologyFaculté de Médecine NeckerParis Cedex 15France

Personalised recommendations