Advertisement

Spatial Analysis of Disease

  • Linda Williams Pickle
Part of the Cancer Treatment and Research book series (CTAR, volume 113)

Abstract

Cancer rate comparisons around the world suggest clear geographic differences that have only recently been appreciated and evaluated by statistical methods. The goal of this chapter is to briefly review the progression of the spatial analysis of disease from simple dot maps and crude rate comparisons to the complex hierarchical spatial models used today. After providing a historical background and necessary epidemiologic fundamentals, we summarize available methods for the exploration, hypothesis testing, and modeling of spatial data. Although the focus here is on methods appropriate for cancer research, other related methods will be mentioned.

Keywords

Spatial Analysis Behavioral Risk Factor Surveillance System Cancer Rate Royal Statistical Society Variogram Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander F. E., Cuzick J. (1992). Methods for the assessment of disease clusters. In: Elliott P., Cuzick J., English D., Stern R., editors. Geographical & Environmental Epidemiology: Methods for Small-Area Studies. New York: Oxford University Press; p 238–50.Google Scholar
  2. Astakhova L. N., Anspaugh L. R., Beebe G. W., Bouville A., Drozdovitch V. V., Garber V., Gavrilin Y. I., Khrouch V. T., Kuvshinnikov A. V., Kuzmenkov Y. N., Minenko V. P., Moschik K. V., Nalivko A. S., Robbins J., Shemiakina E. V., Shinkarev S. (1998). Chernobyl-related thyroid cancer in children of Belarus: A case-control study. Radiation Research 150 (3): 349–56.PubMedCrossRefGoogle Scholar
  3. Barrett F. A. (2000). Finke’s 1792 map of human diseases: the first world disease map? Social Science & Medicine 50 (78): 915–21.CrossRefGoogle Scholar
  4. Beebe G.W., Kato H., Land C. E. (1971). Studies of the mortality of A-bomb survivors. 4. Mortality and radiation dose, 1950–1966. Radiat Res 48 (3): 613–49.PubMedCrossRefGoogle Scholar
  5. Bernardinelli L., Pascutto C., Best N. G., Gilks W. R. (1997). Disease mapping with errors in covariates. Statistics in Medicine 16 (7): 741–52.PubMedCrossRefGoogle Scholar
  6. Besag J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B 36: 192–236.Google Scholar
  7. Besag J. (1975). Statistical analysis of non-lattice data. The Statistician 24 (No.3): 179–95.CrossRefGoogle Scholar
  8. Besag J., Kooperberg C. (1995). On conditional and intrinsic autoregression. Biometrika 82 (4): 733–46.Google Scholar
  9. Besag J., Newell J. (1991). The detection of clusters in rare diseases. Journal of the Royal Statistical Society, Ser A 154: 143–55.Google Scholar
  10. Blot W. J., Fraumeni Jr. J. F. (1976). Geographic patterns of lung cancer: Industrial correlations. American Journal of Epidemiology 103 (6): 539–50.PubMedGoogle Scholar
  11. Blot W. J., Harrington J. M., Toledo A., Hoover R., Heath C. W., Jr., Fraumeni J. F., Jr. (1978). Lung cancer after employment in shipyards during World War II. N Engl J Med 299 (12): 620–4.PubMedCrossRefGoogle Scholar
  12. Bonetti M., Pagano M. (2001). Detecting clustering in regional counts. American Statistical Association Proceedings of the Survey Research Methods Section.Google Scholar
  13. Brillinger D. R. (1986). The natural variability of vital rates and associated statistics. Biometrics 42: 693–734.PubMedCrossRefGoogle Scholar
  14. Bross I. D. J. (1954). A confidence interval for a percentage increase. Biometrics 10: 245–50.CrossRefGoogle Scholar
  15. Burbank F. (1972). A Sequential space-time cluster analysis of Cancer mortality in the United States: Etiologic Implications. Journal of Epidemiology 95 (5): 393–417.Google Scholar
  16. Carlin B. P., Louis T. A. (2000). Bayes and Empirical Bayes Methods for Data Analysis. Second ed. New York: Chapman & Hall/CRC.Google Scholar
  17. Carr D. B., Pierson S. M. (1996). Emphasizing statistical summaries and showing spatial context with micromaps. Statistical Computing & Statistical Graphics Newsletter 7 (3): 16–23.Google Scholar
  18. Carroll R. J., Ruppert D., Stefanski L. A. (1995). Measurement Error in Nonlinear Models. 1st ed. ed. London: Chapman & Hall.Google Scholar
  19. Clayton D., Kaldor J. (1987). Empirical bayes estimates for age-standardized relative risks for use in disease mapping. Biometrics 43: 671–81.PubMedCrossRefGoogle Scholar
  20. Cleveland W. S., Devlin S. J. (1988). Locally weighted regression–An approach to regression analysis by local fitting. Journal of the American Statistical Association 83 (403): 596–610.CrossRefGoogle Scholar
  21. Cornfield J. (1951). A method of estimating comparative rates from clinical data. Journal of the National Cancer Institute 11: 1269–75.PubMedGoogle Scholar
  22. Cox D. R. (1970). The Analysis of Binary Data. 1st ed. London: Methuen & Co. Ltd. Cressie N. A. C. (1993). Statistics for Spatial Data. Revised ed. New York: J. Wiley.Google Scholar
  23. Cressie N. A. C., Read T. R. C. (1989). Spatial data-analysis of regional counts. Biometrical Journal 31 (6): 699–719.CrossRefGoogle Scholar
  24. Cubbin C., Pickle L. W., Fingerhut L. (2000). Social Context and Geographic Patterns of Homicide Among U.S. Black and White Males. American Journal of Public Health 90 (4): 579–87.PubMedCrossRefGoogle Scholar
  25. Cuzick J., Edwards R. (1990). Spatial clustering for inhomogeneous populations. Journal of the Royal Statistical Society, Series B 52: 73–104.Google Scholar
  26. Cuzick J., Edwards R. (1996). Cuzick-Edwards one-sample and inverse two-sampling statistics. In: Alexander F. E., Boyle P., editors. Methods for investigating localized clustering of disease. Lyon: International Agency for Research on Cancer; p 200–2.Google Scholar
  27. Devesa S., Grauman D. J., Blot W. J., Pennello G. A., Hoover R. N., Fraumeni Jr J. F. (1999). Atlas of Cancer Mortality in the United States: 1950–94. Bethesda, MD: National Cancer Institute.Google Scholar
  28. Devine O. J., Annest J. L., Kirk M. L., Holmgreen P, Emrich S. S. (1991). Injury Mortality Atlas. Atlanta, GA: Centers for Disease Control, U.S. Department of Health and Human Services.Google Scholar
  29. Diggle P. (1983). Statistical Analysis of Spatial Point Patterns. London: Academic Press.Google Scholar
  30. Diggle P. J. (2000). Overview of statistical methods for disease mapping and its relationship to cluster detection. In: Elliott P., Wakefield J. C., Best N. G., Briggs D. J., editors. Spatial Epidemiology: Methods and Applications. Oxford: Oxford University Press; p 87–103.Google Scholar
  31. Draper G. J., Stiller C. A., Cartwright R. A., Craft A. W., Vincent T. J. (1993). Cancer in Cumbria and in the vicinity of the Sellafield nuclear installation, 196–390. British Medical Journal 306 (6870): 89–94.PubMedCrossRefGoogle Scholar
  32. Fleiss J. L. (1981). Statistical Methods for Rates and Proportions. Second ed. New York: John WIley & Sons.Google Scholar
  33. Geary R. C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician 5: 115–45.CrossRefGoogle Scholar
  34. Ghosh M., Natarajan K., Stroud T. W. F., Carlin B. P. (1998). Generalized linear models for small-area estimation. Journal of the American Statistical Association 93 (441): 273–82.CrossRefGoogle Scholar
  35. Ghosh M., Rao J. N. K. (1994). Small-area estimation–an appraisal. Statistical Science 9 (1): 55–76.CrossRefGoogle Scholar
  36. Haining R. P. (1990). Spatial Data Analysis in the Social and Environmental Sciences. Cambridge England: Cambridge University Press.CrossRefGoogle Scholar
  37. Hansen K. M. (1991). Head-banging: robust smoothing in the plane. IEEE Transactions on Geoscience and Remote Sensing 29 (3): 369–78.CrossRefGoogle Scholar
  38. Haviland A. (1875). The geographical distribution of heart disease and dropsy, cancer in females and phthisis in females in England and Wales. London: Swan Schonnenschein.Google Scholar
  39. Howe G. M. (1963). National Atlas of Disease Mortality in the United Kingdom. London: Nelson.Google Scholar
  40. Howe G. M. (1989). Historical evolution of disease mapping in general and specifically of cancer mapping. In: Boyle P., Muir C. S., Grundmann E., editors. Cancer Mapping. New York: Springer-Verlag; p 1–21.CrossRefGoogle Scholar
  41. Janerich D. T., Burnett W. S., Feck G., Hoff M., Nasca P., Polednak A. P., Greenwald P., Vianna N. (1981). Cancer incidence in the Love Canal area. Science 212 (4501): 1404–7.PubMedCrossRefGoogle Scholar
  42. Kafadar K. (1994). Choosing among two-dimensional smoothers in practice. Computational Statistics & Data Analysis 18: 419–39.CrossRefGoogle Scholar
  43. Kaluzny S. P., Vega S. C., Cardoso T. P., Shelly A. A. (1998). S+ Spatial Stats: User’s manual for Windows ® and UNIX ®. New York: Springer.Google Scholar
  44. Kemp I., Boyle P., Smans M., Muir C. S. (1985). Atlas of Cancer in Scotland, 1975–1980, Incidence and Epidemiological Perspective. Lyon: International Agency for Research on Cancer.Google Scholar
  45. Knox E. (1989). Detection of clusters. In: Elliott P., editor. Methodology of Enquiries into Disease Clustering. London: Small Area Health Statistics Unit.Google Scholar
  46. Knox G. (1964). Detection of space-time interactions. Appl Stat 13: 25–9.CrossRefGoogle Scholar
  47. Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics-Theory and Methods 26: 1481–96.CrossRefGoogle Scholar
  48. Lawson A., Biggeri A., Bohning D., Lesaffre E., Viel J.-F., Bertollini R. (1999). Disease Mapping and Risk Assessment For Public Health. Chichester: Wiley.Google Scholar
  49. Le N. D., Marrett L. D., Robson D. L., Semenciw R. M., Turner D., Walter S. D. (1996). Canadian Cancer Incidence Atlas. Ottawa: Government of Canada.Google Scholar
  50. LeClere F. B., Rogers R. G., Peters K. (1998). Neighborhood social context and racial differences in women’s heart disease mortality. J Health Soc Behav 39 (2): 91–107.PubMedCrossRefGoogle Scholar
  51. Littell R. C., Milliken G. A., Stroup W. W., Wolfinger R. D. (1996). SAS ® System for Mixed Models. Cary, NC: SAS Institute Inc.Google Scholar
  52. Mantel N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209–20.PubMedGoogle Scholar
  53. Manton K. G., Woodbury M. A., Stallard E., et al. (1989). Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. Journal of the American Statistical Association 84: 637–50.PubMedCrossRefGoogle Scholar
  54. Mason T. J., McKay F. W., Hoover R., Blot W. J., Fraumeni Jr J. F. (1975). Atlas of Cancer Mortality for U.S. Counties: 1950–1969. Washington, D.C.: USGPO (DHEW pub no (NIH) 75–780 ).Google Scholar
  55. MathSoft. (1999). S-Plus 2000 User’s Guide. Seattle, WA: Data Analysis Products Division, MathSoft.Google Scholar
  56. McCullagh P., Nelder J. A. (1983). Generalized Linear Models. Second ed. London: Chapman and Hall.Google Scholar
  57. McLeod K. S. (2000). Our sense of Snow: the myth of John Snow in medical geography. Social Science & Medicine 50 (7–8): 923–35.CrossRefGoogle Scholar
  58. Moran P. A. P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society, Series B 10: 243–51.Google Scholar
  59. Mungiole M., Pickle L. W., Simonson K. H. (1999). Application of a weighted head- banging algorithm to mortality data maps. Statistics in Medicine 18 (23): 3201–9.PubMedCrossRefGoogle Scholar
  60. Najem R. G., Cappadona J. L. (1991). Health effects of hazardous chemical waste disposal sites in New Jersey and in the United States: A review. Statistics in Medicine 7 (6): 352–62.Google Scholar
  61. Nelson D. E., Holtzman D., Waller M., Leutzinger C. L., Condon K. (1998). Objectives and design of the Behavioral Risk Factor Surveillance System. American Statistical Association Proceedings of the Survey Research Methods Section.: 214–8.Google Scholar
  62. Neutra R. R. (1990). Counterpoint from a cluster buster. American Journal of Epidemiology 132: 1–8.PubMedGoogle Scholar
  63. Neyman J., Scott E. L. (1958). Statistical approach to problems of cosmology. Journal of the Royal Statistical Society, Series B 20: 1–29.Google Scholar
  64. Ohno Y., Aoki K. (1981). Cancer deaths by city and county in Japan (1959–1971): A test of significance for geographic clusters of disease. Social Science & Medicine 15: 251–8.Google Scholar
  65. Openshaw S., Charlton M., Wymer C., Craft A. W. (1987). A mark I geographical analysis machine for the automated analysis of point data sets. International Journal of Geographical Information Systems 1: 335–58.CrossRefGoogle Scholar
  66. Peterman AH. 1852. Cholera map of the British Isles showing the districts attacked in 1831, 1832, and 1833. Constructed from official documents. London: Betts.Google Scholar
  67. Pickle LW, Herrmann D. 1995. Cognitive Aspects of Statistical Mapping. Hyattsville, MD: National Center for Health Statistics; Working Paper Series Report no 18.Google Scholar
  68. Pickle L. W., Mason T. J., Howard N., Hoover R., Fraumeni Jr. J. F. (1987). Atlas of U.S. Cancer Mortality Among Whites: 1950–1980. Washington, DC: USGPO (DHHS pub no (NIH) 87–2900).Google Scholar
  69. Pickle L. W., Mason T. J., Howard N., Hoover R., Fraumeni J. F. (1990). Atlas of U.S. Cancer Mortality Among Nonwhites: 1950–1980. Washington D.C.: USGPO (DHHS pub no (NIH) 90–1582 ).Google Scholar
  70. Pickle L. W., Mungiole M., Jones G. K., White A. A. (1996). Atlas of United States Mortality. Hyattsville, MD: National Center for Health Statistics, USGPO (DHHS pub no (PHS) 97–1015 ).Google Scholar
  71. Pickle L. W., Su Y. (2002). Geographic patterns of health insurance coverage and health risk factors for U.S. counties. American Journal of Preventive Medicine 22 (2): 75–83.PubMedCrossRefGoogle Scholar
  72. Pickle L. W., White A. A. (1995). Effects of the choice of age-adjustment method on maps of death rates. Statistics in Medicine 14 (5–7): 615–27.PubMedCrossRefGoogle Scholar
  73. Potthoff R. F., Whittinghill M. (1996). Testing for homogeneity in the Poisson distribution. Biometrika 53: 183–90.Google Scholar
  74. Rasbash J., Browne W., Goldstein H., Yang M., Plewis I., Healy M., Woodhouse G., Draper D, Langford I., Lewis T. (2000). A User’s Guide to MLwiN. London: Multilevel Models Project, Institute of Education, University of London.Google Scholar
  75. Riggan W. B., Creason J. P., Nelson W. C., Manton K. G., Woodbury M. A., Stallard E., Pellom A. C., Beaubier J. (1987). U.S. Cancer Mortality Rates and Trends, 1950–1979. Research Triangle Park, NC: U.S. Environmental Protection Agency.Google Scholar
  76. Snow J. (1855). On the Mode of Communication of Cholera. 2nd ed. London: John Churchill.Google Scholar
  77. Spiegelhalter D., Thomas A., Best N., Gilks W. (1995). BUGS: Bayesian inference using GIBBS Sampling, Version 0.50. Cambridge: MRC Biostatistics Unit.Google Scholar
  78. Stocks P. 1928. On the evidence for a regional distribution of cancer prevalence in England and Wales. London: British Empire Cancer Campaign.Google Scholar
  79. Stocks P. 1936. Distribution in England and Wales of cancer of various organs. London: British Cancer Campaign; Report no 13.Google Scholar
  80. Tango T. (1995). A class of tests for detecting ‘general’ and ’focused’ clustering of rare diseases. Statistics in Medicine 14: 2323–34.PubMedCrossRefGoogle Scholar
  81. Tango T. (1999). Comparison of general tests for spatial clustering. In: Lawson A., Biggeri A., Bohning D., Lesaffre E., Viel J.-F., Bertollini R., editors. Disease Mapping and Risk Assessment for Public Health. Chichester: John Wiley and Sons, Ltd; p 111–7.Google Scholar
  82. Tango T. (2000). A test for spatial disease clustering adjusted for multiple testing. Statistics in Medicine 19 (2): 191–204.PubMedCrossRefGoogle Scholar
  83. Tukey J. W. (1977). Exploratory Data Analysis. Reading, Mass.: Addison-Wesley Pub. Co.Google Scholar
  84. Tukey P. A., Tukey J. W. (1981). Graphical display of data sets in 3 or more dimensions. In: Barnett V., editor. Interpreting Multivariate Data. New York: John Wiley and Sons.Google Scholar
  85. Turnbull B., Iwano E. J., Burnett W. S. (1990). Monitoring for clusters of disease: application to leukemia incidence in upstate New York. Am J Epidemiol 132: S136 - S143.PubMedGoogle Scholar
  86. Varon E. 1998 Sep 7. Connecting the dots: NCI hopes advanced GIS tools will help trace causes of breast cancer. Federal Computer Week;1, 76.Google Scholar
  87. Verdecchia A., Capocaccia R., Egidi V., Golini A. (1989). A method for the estimation of chronic disease morbidity and trends from mortality data. Statistics in Medicine 8 (2): 201–16.PubMedCrossRefGoogle Scholar
  88. Wakefield J. C., Kelsall J. E., Morris S. E. (2000). Clustering, cluster detection, and spatial variation in risk. In: Elliott P., Wakefield J. C., Best N. G., Briggs D. J., editors. Spatial Epidemiology: Methods and Applications. Oxford: Oxford University Press; p 128–52.Google Scholar
  89. Walker S. H., Duncan D. B. (1967). Estimation of the probability of an event as a function of several independent variables. Biometrika 54: 167–79.PubMedGoogle Scholar
  90. Waller, L. A. Hierarchical models for disease mapping. Encyclopedia of Environmetrics, Vol 2. Chichester: John Wiley and Sons; p 1004–7.Google Scholar
  91. Whittemore A. S., Fiend N., Brown Jr B. W., Holly E. (1987). A test to detect clusters of disease. Biometrika 74 (3): 631–5.CrossRefGoogle Scholar
  92. Woolf B. (1955). On estimating the relation between blood group and disease. Annals of Human Genetics 19: 251–3.PubMedCrossRefGoogle Scholar
  93. Xiang H. Y., Nuckols J. R., Stallones L. (2000). A geographic information assessment of birth weight and crop production patterns around mother’s residence. Environmental Research 82 (2): 160–7.PubMedCrossRefGoogle Scholar
  94. Zhu L., Carlin B. P. (2000). Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Statistics in Medicine 19 (17–18): 2265–78.PubMedCrossRefGoogle Scholar
  95. Zoellner I. K., Schmidtmann I. M. (1999). Empirical studies of cluster detection–Different cluster tests in application to German cancer maps. In: Lawson A., Biggeri A., Bohning D., Lesaffre E., Viel J.-F., Bertollini R., editors. Disease Mapping and Risk Assessment for Public Health. Chichester: John Wiley and Sons, Ltd.; p 169–78.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Linda Williams Pickle
    • 1
  1. 1.National Cancer InstituteUSA

Personalised recommendations