Advertisement

A Bilevel Programming Approach to Optimal Price Setting

  • Patrice Marcotte
  • Gilles Savard
Part of the Advances in Computational Management Science book series (AICM, volume 4)

Abstract

In this paper, we survey applications and algorithms pertaining to an important class of price setting problems formulated as bilevel programs.

Keywords

Equilibrium Constraint Lower Level Problem Airline Industry Complementarity Constraint Bilevel Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bencheick, A., “Conception et tarification d’un réseau privé mul-tidébit à large bande dans un environnement concurrentiel”, Ph.D. thesis, Institut National de Recherche Scientifique, INRS-Télécommunication (1997).Google Scholar
  2. [2]
    Brotcorne, L., Labbé, M., Marcotte, P. and Savard, G., “A bilevel model for toll optimization on a multicommodity transportation network”, forthcoming in Transportation Science.Google Scholar
  3. [3]
    Brotcorne, L., “Approches opérationnelles et stratégiques des problèmes de trafic routier”, Ph.D. thesis, Université Libre de Bruxelles, February 1998.Google Scholar
  4. [4]
    Cocchi, R., Shenker, S., Estrin, D. and Zhang, L., “Pricing in computer networks: motivation, formulation, and example”, IEEE/ACM Transactions on Networking 1 (1993) 614–627.CrossRefGoogle Scholar
  5. [5]
    Dial, R. B., “Minimal-revenue congestion pricing Part II: An efficient algorithm for the general case”, Transportation Research B 34 (2000) 645–665.CrossRefGoogle Scholar
  6. [6]
    Dial, R. B.J “Minimal-revenue congestion pricing part I: A fast algorithm for the single-origin casse case”, Transportation Research B 33 (1999) 189–202.CrossRefGoogle Scholar
  7. [7]
    Fukushima, M., “Equivalent differentiate optimization problems and descent methods for asymmetric variational inequality problems”, Mathematical Programming 53 (1992) 99–110.CrossRefGoogle Scholar
  8. [8]
    Gendreau, M., Marcotte, P. and Savard, G., “A Hybrid tabu-ascent algorithm for the linear bilevel programming problem”, Journal of Global Optimization 8 (1996) 217–232.CrossRefGoogle Scholar
  9. [9]
    Girard, A. and Zidane, R., “Revenue Optimization of B-ISDN Networks”, IEEE Transactions on Communications 43 (1995) 15–25.CrossRefGoogle Scholar
  10. [10]
    Hansen, P., Jaumard, B. and Savard, G., “New branch-and-bound rules for linear bilevel programming”, JOTA 22 (1992) 1194–1217.Google Scholar
  11. [11]
    Hearn, D.W. and Ramana, M.V., “Solving congestion toll pricing models”, in: Equilibrium and Advanced Transportation Modelling, Patrice Marcotte and Sang Nguyen (eds.), Kluwer, Dordrecht, pp. 109–123, 1998.Google Scholar
  12. [12]
    Kocvara, M. and Outrata, J.V., “A nonsmooth approach to optimization problems with equilibrium constraints”, in Complementarity and variational problems. State of the art, M.C. Ferris and J.S. Pang (eds.), SIAM, Philadelphia (1997).Google Scholar
  13. [13]
    Julsain, H., “Tarification dans les réseaux de télécommunications: une approche par programmation mathématique à deux niveaux”, Mémoire de maîtrise, École Polytechnique de Montréal, 1999.Google Scholar
  14. [14]
    Labbé, M., Marcotte, P. and Savard, G., “A bilevel model of taxation and its application to optimal highway pricing”, Management Science 44 (1998) 1595–1607.Google Scholar
  15. [15]
    Larsson, T. and Patriksson, M., “Traffic management through link tolls - an approach utilizing side constrained traffic equilibrium models”, in: Equilibrium and Advanced Transportation Modelling, Patrice Marcotte and Sang Nguyen (eds.), Kluwer, Dordrecht, pp. 125–151, 1998.Google Scholar
  16. [16]
    Loridan, P. and Morgan, J., “E-regularized two-level optimization problems: approximation and existence results”, Fifth French-German Conference on Optimization, Lecture Notes in Mathematics 1405, Springer-Verlag (1989) 99–113.Google Scholar
  17. [17]
    Luo, Z.Q., Pang, J.S. and Ralph, D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, Cambridge (1996).CrossRefGoogle Scholar
  18. [18]
    Mitchell, B.M. and Vogelsang, I., Telecommunications pricing: Theory and practice, Cambridge University Press, (1992).Google Scholar
  19. [19]
    Outrata, J.V., Kocvara, M. and Zowe, J., Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht, (1998).Google Scholar
  20. [20]
    Shimizu, K., Ishizuka, Y. and Bard, J.F., Nondifferentiable and Two-Level Mathematical Programming, Kluwer, Boston (1997).CrossRefGoogle Scholar
  21. [21]
    Scholtes, S. and Stohr, M., “Exact penalization of mathematical programs with equilibrium constraints” SIAM J. Control and Optimization 37, pp.617–652, (1999).CrossRefGoogle Scholar
  22. [22]
    Special issue on Yield Management, Transportation Science 33 (1999).Google Scholar
  23. [23]
    Wang, Q., Peha, J.M. and Sirbu, M., “Optimal Pricing for Integrated-Services Networks”, in Internet Economics, Joseph Bailey and Lee McKnight editors, MIT Press, (1997) 353–376.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Patrice Marcotte
  • Gilles Savard

There are no affiliations available

Personalised recommendations