• Andreas Mandelis


The starting point for the derivation of the general characteristics of differential equations, boundary-value problems, and Green functions for diffusion-wave fields is the consideration of time-domain equations of diffusion. Owing to the relative simplicity and popularity of the thermal-wave field, in the first eight chapters consideration will be given to the time-dependent partial differential equation of heat conduction in three dimensions as a generator of the linear thermal-wave-field (TWF) partial differential equation and associated boundary-value problems. Besides, the TWF formalisms developed herein are directly applicable to the mathematics of a fast growing spectrum of disciplines which encompass diffusion waves [Mandelis, 2000]. Their most widespread application outside the main areas dealt with in this book is in the time-harmonic non-destructive evaluation with Eddy currents [L. B. Felsen and N. Marcuvitz, 1972; J. R. Bowler, 1999] and in applications to geophysical problems [W. A. SanFilipo and G. W. Hohmann, 1985]. Very recently, diffusion-wave methods have been developed in the study of organic compound migration in stratified media, which help clarify the transport of cyclic diffusive transients subject to harmonic boundary conditions [Trefry, 1999].


Green Function Laplace Transformation Dirac Delta Function Conduction Heat Transfer Impulsive Source 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green’s Functions (Hemisphere Publ. Corp., Washington, DC, 1992).Google Scholar
  2. J. R. Bowler, J. Appl. Phys. 86, 6494 (1999).ADSCrossRefGoogle Scholar
  3. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  4. G. Busse, F. Twardon and R. Mueller, Proc. 5th Int. Conf. Photoacoustic Photothermal Phenomena, Springer Ser. Opt. Sci. 58, 329 (1988).Google Scholar
  5. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959).Google Scholar
  6. D. L. Cummings, R. L. Reuben and D. A. Blackburn, Metallurgical Trans., 15A, 639(1984).ADSCrossRefGoogle Scholar
  7. S. K. Evnochides and E. J. Henley, J. Polymer Sci. Part A-2, 8, 1987 (1970).Google Scholar
  8. L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (Prentice-Hall, Englewood Cliffs, NJ, 1972).Google Scholar
  9. W. K. Hocking, S. Fukao, M. Yamamoto, T. Tsuda and S. Kato, Radio Sci. 26, 1281 (1991).ADSCrossRefGoogle Scholar
  10. J. D. Jackson, Classical Electrodynamics, 2nd Ed. (Wiley, New York, 1975).MATHGoogle Scholar
  11. E. Kreyszig, Advanced Engineering Mathematics, 7th Ed. (Wiley, New York, 1993).MATHGoogle Scholar
  12. A. Mandelis, Diffusion Waves and their Uses, Physics Today 53, Part I, 29 (August 2000).CrossRefGoogle Scholar
  13. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol I (McGraw-Hill, New York, 1953).MATHGoogle Scholar
  14. M. N. Ozisik, Boundary Value Problems of Heat Conduction (Dover Publ., Inc., New York, 1968).Google Scholar
  15. R. Patterson and P. Doran, J. Membrane Sci. 27, 105 (1986).CrossRefGoogle Scholar
  16. B. S. H. Royce, D. Voss and A. Bocarsly, J. Physique (Paris), Suppl. 10, 44, 325 (1983).Google Scholar
  17. W. A. SanFilipo and G. W. Hohmann, Geophysics 50, 798 (1985).ADSCrossRefGoogle Scholar
  18. M. G. Trefry, Trasport Porous Media 37, 183 (1999).MathSciNetCrossRefGoogle Scholar
  19. A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), pp. 212–213.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Andreas Mandelis
    • 1
  1. 1.Department of Mechanical and Industrial Engineering, Photothermal and Optoelectronic Diagnostics LaboratoryUniversity of TorontoTorontoCanada

Personalised recommendations