Involvement of the Basal Ganglia and Dopamine System in Learning and Execution of Goal-Directed Behavior

  • Minoru Kimura
  • Naoyuki Matsumoto
  • Yasumasa Ueda
  • Takemasa Satoh
  • Takafumi Minamimoto
  • Hiroshi Yamada
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

To perform any task of our own volition, we execute multiple movements in a specific order based on the likelihood of obtaining a successful outcome. Neurons in the supplementary motor area (SMA), pre-SMA and those in the basal ganglia encode the temporal order, or the sequence of movements used in the tasks (Mushiake and Strick, 1995; Kermadi and Joseph, 1995; Nakamura et al., 1998; Shima and Tanji, 1998, 2000). These neurons must play a crucial role in the mechanisms of planning and execution of temporally organized multiple movements, action.

Keywords

Dopamine Catecholamine MPTP Maki Tetrahydropyridine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, AM., and Kimura, M. 1994, Responses of tonically active neurons in the primate’s striatum undergo systematic changes during behavioral sensory-motor conditioning. J. Neurosci. 14: 3969–3984.PubMedGoogle Scholar
  2. DeLong, M.R. 1990, Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13: 281–285.PubMedCrossRefGoogle Scholar
  3. Kawagoe, R., Takikawa, Y., and Hikosaka, O. 1998, Expectation of reward modulates cognitive signals in the basal ganglia. Nature. Neurosci. 1: 411–416.PubMedCrossRefGoogle Scholar
  4. Kermadi, I. and Joseph, J. P. 1995, Activity in the caudate nucleus of monkey during spatial sequencing. J. Neurophysiol. 74: 911–933.PubMedGoogle Scholar
  5. Kimura, M. 1995, Role of basal ganglia in behavioral learning. Neurosci. Res. 22: 353–358.PubMedCrossRefGoogle Scholar
  6. Matsumoto, N., Hanakawa, T., Maki, S., Graybiel, A.M., and Kimura, M. 1999, Role of nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J. Neurophysiol. 82: 978–998.PubMedGoogle Scholar
  7. Mushiake, H. and Strick, P. L. 1995, Pallidal neuron activity during sequential arm movements. J. Neurophysiol. 74: 2754–2758.PubMedGoogle Scholar
  8. Nakamura, K., Sakai, K. and Hikosaka, O. 1998, Neuronal activity in medial frontal cortex during learning of sequential procedures. J. Neurophysiol. 80: 2671–2687.PubMedGoogle Scholar
  9. Obata, K. and Yoshida, M. 1973, Caudate-evoked inhibition and actions of GABA and other substances on cat pallidal neurons. Brain Res. 21: 455–459.CrossRefGoogle Scholar
  10. Russchen, F.T., Bakst, I., Amaral D.G., Price, J.L. 1985, The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res. 329: 241–257.PubMedCrossRefGoogle Scholar
  11. Schultz, W. 1998, Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27.PubMedGoogle Scholar
  12. Schultz, W., Dayan, P., and Montague, R.R.A. 1997, Neural substrate of prediction and reward. Science 275: 1593–1599.PubMedCrossRefGoogle Scholar
  13. Shidara, M., Aigner, T.G/, and Richmond, B.J. 1998, Neural signals in the monkey ventral striatum related to progress through a predictable series of trials. J. Neurosci. 18: 2613–2625.PubMedGoogle Scholar
  14. Shima, K. and Tanji, J. 1998, Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J. Neurophysiol. 80: 3247–3260.PubMedGoogle Scholar
  15. Shima, K. and Tanji, J. 2000, Neural activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84: 2148–2160.PubMedGoogle Scholar
  16. Smith, Y., and Parent, A. 1986, Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18: 347–371.PubMedCrossRefGoogle Scholar
  17. Steinfels, G.F., Heym, J., Strecker, R.E., and Jacobs, B.L. 1983, Behavioral correlates of dopaminergic unit activity in freely moving cats. Brain Res.. 258: 217–228.PubMedCrossRefGoogle Scholar
  18. Thorpe, S.J., Rolls, E.T., and Maddison, S. 1983, The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49: 93–115.PubMedCrossRefGoogle Scholar
  19. Yoshida, M., Rabin, A. and Anderson, M. 1972, Monosynaptic inhibition of pallidal neurons by axon collaterals of caudato-nigral fibers. Exp. Brain Res. 15: 333–347.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Minoru Kimura
    • 1
  • Naoyuki Matsumoto
  • Yasumasa Ueda
  • Takemasa Satoh
  • Takafumi Minamimoto
  • Hiroshi Yamada
    • 1
  1. 1.Department of PhysiologyKyoto Prefectural University of MedicineKawaramachi-Hirokoji, Kamigyo-ku, KyotoJapan

Personalised recommendations