Advertisement

Fast-Scan Cyclic Voltammetry in Freely-Moving Rats

  • Paul E. M. Phillips
  • Evgeny A. Budygin
  • Donita L. Robinson
  • R. Mark Wightman
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

Microdialysis has been the tool of choice for the measurement of bioactive compounds in the brain of behaving animals for a number of years. Quantitative measurements of the extracellular composition can be made with precise chemical specificity over relatively long periods of time in pathological, pharmacological and behaviorally salient situations. Many investigators have utilized this technique for the measurement of forebrain dopamine under a variety of conditions.

Keywords

Dopamine Release Dopamine Concentration Extracellular Dopamine Ethanol Dose Voltammetric Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanchard, B.A., Steindorf, S., Wang, S. and Glick, S.D. (1993) Sex differences in ethanol-induced dopamine release in nucleus accumbens and in ethanol consumption in rats. Alcohol Clin. Exp. Res. 17:968–973.PubMedCrossRefGoogle Scholar
  2. Budygin, E.A., Kilpatrick, M.R., Gainetdinov, R.R. and Wightman, R.M. (2000) Correlation between behavior and extracellular dopamine levels in rat striatum: Comparison of microdialysis and fast-scan cyclic voltammetry. Neurosci. Lett. 281:9–12.PubMedCrossRefGoogle Scholar
  3. Budygin, E.A., Phillips, P.E.M., Robinson, D.L., Kennedy, A.P., Gainetdinov, R.R. and Wightman, R.M. (2001) Effect of acute ethanol on striatal dopamine neurotransmission in ambulatory rats. J Pharmacol Exp Ther. 297:27–34.PubMedGoogle Scholar
  4. Garris, P.A., Christensen, J.R.C., Rebec, G.V. and Wightman, R.M. (1997) Real-time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J. Neurochem. 68:152–161.PubMedCrossRefGoogle Scholar
  5. Giros, B., Jaber, M., Jones, S.R., Wightman, R.M. and Caron, M.G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379:606–612.PubMedCrossRefGoogle Scholar
  6. Grace, A.A. (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience 41:1–24.PubMedCrossRefGoogle Scholar
  7. Mereu, G., Fadda, F. and Gessa, G.L. (1984) Ethanol stimulates the firing rate of nigral dopaminergic neurons in unanesthetized rats. Brain Res. 292:63–69.PubMedCrossRefGoogle Scholar
  8. Murray, A.M. and Waddington, J.L. (1990) The interaction of clozapine with dopamine D1 versus dopamine D2 receptor-mediated function: behavioral indices. Eur. J. Pharmacol., 186:79–86.PubMedCrossRefGoogle Scholar
  9. Schultz, W. (1994) Behavior-related activity of primate dopamine neurons. Rev. Neurol. 150:634–639.PubMedGoogle Scholar
  10. Yavich, L. and Tiihonen, J. (2000) Patterns of dopamine overflow in mouse nucleus accumbens during intracranial self-stimulation. Neurosci. Lett. 293:41–4.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Paul E. M. Phillips
  • Evgeny A. Budygin
  • Donita L. Robinson
  • R. Mark Wightman
    • 1
  1. 1.Department of Chemistry and Neuroscience CenterUniversity of North CarolinaChapel HillUSA

Personalised recommendations