Advertisement

The Evolution of in Vivo Voltammetry and Microdialysis

  • Joseph B. JusticeJr.
Part of the Advances in Behavioral Biology book series (ABBI, volume 53)

Abstract

In vivo voltammetry and microdialysis are two leading techniques for monitoring neurochemistry in the brain. This paper addresses the state of the art of voltammetry and microdialysis as they have evolved from their respective beginnings. Voltammetry is an old and well established electrochemical method. However, the development and application of in vivo voltammetry and microdialysis for measurement of neurotransmitters began about the same time in the 1970’s. In R. N. Adams laboratory at the University of Kansas, carbon paste electrodes were first put in ventricles of the rat brain and then in the brain itself.1,2 The developments that followed have been reviewed.3 About this same time, Urban Ungerstedt, developed the microdialysis probe, based on the idea of exchange of substances across a blood capillary.4 This was an extension of the earlier push-pull device of Gaddum5 and the dialysis devices of Bito et al.6 and Delgado et al.7 for sampling the extracellular environment of the brain. More than a thousand papers a year are now published using microdialysis.

Keywords

Vesicular Release Carbon Fiber Electrode Carbon Fiber Microelectrode Transmitter Amino Acid Additional Regulatory Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. N. Adams, Probing brain chemistry with electroanalytical techniques, Anal. Chem. 48, 1128A–1138A (1976).CrossRefGoogle Scholar
  2. 2.
    R. M. Wightman, E. Strope, P. M. Plotsky, R. N. Adams, Monitoring of transmitter metabolites by voltammetry in cerebrospinal fluid following neural pathway stimulation, Nature 262, 145–147 (1976).PubMedCrossRefGoogle Scholar
  3. 3.
    J. A. Stamford and J. B. Justice, Jr. Probing Brain Chemistry: Voltammetry comes of age, Anal. Chem. 68, 359A–363A (1996).CrossRefGoogle Scholar
  4. 4.
    U. Ungerstedt and C. Pycock, Functional correlates of dopaminergic neurotransmission, Bull. Schweiz. Akad. Med. Wiss. 1278, 1–13 (1974).Google Scholar
  5. 5.
    J. H. Gaddum, Push-pull cannulae, J. Physiol. 155, 1–2 (1961).Google Scholar
  6. 6.
    L. Bito, H. Davson, E. M. Levin, M. Murray, N. Snider, The concentration of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog, J. Neurochem. 13, 1057–1067(1966).PubMedCrossRefGoogle Scholar
  7. 7.
    J. M. R. Delgado, F. V. DeFeudis, R. H. Roth, D. K. Ryugo, B. M. Mitruka, Dialytrode for long term intracerebral perfusion in awake monkeys, Arch. Int. Pharmacodyn. 198, 9–21 (1972).PubMedGoogle Scholar
  8. 8.
    D. J. Leszczyszyn, J. A. Jankowski, O. H. Viveros, E. J. Diliberto Jr., J. A. Near, and R. M. Wightman, Secretion of catecholamines from individual adrenal medullary chromaffin cells, J. Neurochem. 56, 1855–1863(1991).PubMedCrossRefGoogle Scholar
  9. 9.
    T.J. Schroeder, R. Borges, J. M. Finnegan, K. Pihel, C. Amatore, R. M. Wightman, Temporally resolved, independent stages of individual exocytotic secretion events, Biophys. J. 70, 1061–1068 (1996).PubMedCrossRefGoogle Scholar
  10. 10.
    E. R. Davis and R. M. Wightman, Spatio-temporal resolution of exocytosis from individual cells, Annu. Rev. Biophys. Biomol. Struct. 27, 77–103 (1998).CrossRefGoogle Scholar
  11. 11.
    R. H. Chow, J. Klingauf, C. Heineman, R. S. Zucker, E. Neher, Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron 16, 369–376 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Rahmimoff, J. M. Fernandez, Pre- and postfusion regulation of transmitter release, Neuron 18, 17–27 (1997).CrossRefGoogle Scholar
  13. 13.
    A. Galli, R. D. Blakely, L. J. DeFelice, Patch-clamp and amperometric recordings from norepinephrine transporters: Channel activity and voltage-dependent uptake, Proc. Natl. Acad. Sci. USA 95, 13260–13265 (1998).PubMedCrossRefGoogle Scholar
  14. 14.
    O. G. Nilsson, L. Brandt, U. Understedt, H. Saveland, Bedside detection of brain ischemia using intracebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration, Neurosurgery 45, 1176–84 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    J. L. Peters, H. Yang, and A. C. Michael, Quantitative aspects of brain microdialysis, Anal. Chim. Acta 412, 1–12 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Joseph B. JusticeJr.
    • 1
  1. 1.Department of ChemistryEmory UniversityAtlantaUSA

Personalised recommendations